npvinHnivqn commited on
Commit
c25212c
·
verified ·
1 Parent(s): d192fd1

library_name: transformers
tags: []
---

## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.007
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
```

## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.168
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
```

## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 200

## Logging
### Training process
```
{'validation_loss': tensor(6.4207, device='cuda:0'), 'validation_loss_ce': tensor(2.0609, device='cuda:0'), 'validation_loss_bbox': tensor(0.5410, device='cuda:0'), 'validation_loss_giou': tensor(0.8274, device='cuda:0'), 'validation_cardinality_error': tensor(84.9688, device='cuda:0')}
{'training_loss': tensor(2.3578, device='cuda:0'), 'train_loss_ce': tensor(0.5497, device='cuda:0'), 'train_loss_bbox': tensor(0.1655, device='cuda:0'), 'train_loss_giou': tensor(0.4904, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0166, device='cuda:0'), 'validation_loss_ce': tensor(0.5406, device='cuda:0'), 'validation_loss_bbox': tensor(0.2461, device='cuda:0'), 'validation_loss_giou': tensor(0.6227, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6157, device='cuda:0'), 'train_loss_ce': tensor(0.4145, device='cuda:0'), 'train_loss_bbox': tensor(0.2141, device='cuda:0'), 'train_loss_giou': tensor(0.5653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6287, device='cuda:0'), 'validation_loss_ce': tensor(0.4480, device='cuda:0'), 'validation_loss_bbox': tensor(0.1945, device='cuda:0'), 'validation_loss_giou': tensor(0.6040, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7792, device='cuda:0'), 'train_loss_ce': tensor(0.4003, device='cuda:0'), 'train_loss_bbox': tensor(0.1783, device='cuda:0'), 'train_loss_giou': tensor(0.7436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4423, device='cuda:0'), 'validation_loss_ce': tensor(0.4439, device='cuda:0'), 'validation_loss_bbox': tensor(0.1715, device='cuda:0'), 'validation_loss_giou': tensor(0.5705, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0499, device='cuda:0'), 'train_loss_ce': tensor(0.4943, device='cuda:0'), 'train_loss_bbox': tensor(0.2466, device='cuda:0'), 'train_loss_giou': tensor(0.6613, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3473, device='cuda:0'), 'validation_loss_ce': tensor(0.4454, device='cuda:0'), 'validation_loss_bbox': tensor(0.1586, device='cuda:0'), 'validation_loss_giou': tensor(0.5544, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5991, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1607, device='cuda:0'), 'train_loss_giou': tensor(0.6971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2988, device='cuda:0'), 'validation_loss_ce': tensor(0.4328, device='cuda:0'), 'validation_loss_bbox': tensor(0.1548, device='cuda:0'), 'validation_loss_giou': tensor(0.5460, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6833, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1728, device='cuda:0'), 'train_loss_giou': tensor(0.7090, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6458, device='cuda:0'), 'validation_loss_ce': tensor(0.4345, device='cuda:0'), 'validation_loss_bbox': tensor(0.1837, device='cuda:0'), 'validation_loss_giou': tensor(0.6464, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2738, device='cuda:0'), 'train_loss_ce': tensor(0.4427, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.5337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3650, device='cuda:0'), 'validation_loss_ce': tensor(0.4310, device='cuda:0'), 'validation_loss_bbox': tensor(0.1683, device='cuda:0'), 'validation_loss_giou': tensor(0.5463, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2507, device='cuda:0'), 'train_loss_ce': tensor(0.4785, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.5507, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3450, device='cuda:0'), 'validation_loss_ce': tensor(0.4320, device='cuda:0'), 'validation_loss_bbox': tensor(0.1631, device='cuda:0'), 'validation_loss_giou': tensor(0.5487, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3232, device='cuda:0'), 'train_loss_ce': tensor(0.4610, device='cuda:0'), 'train_loss_bbox': tensor(0.1449, device='cuda:0'), 'train_loss_giou': tensor(0.5689, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2947, device='cuda:0'), 'validation_loss_ce': tensor(0.4268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5297, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2340, device='cuda:0'), 'train_loss_ce': tensor(0.3145, device='cuda:0'), 'train_loss_bbox': tensor(0.1381, device='cuda:0'), 'train_loss_giou': tensor(0.6146, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2105, device='cuda:0'), 'validation_loss_ce': tensor(0.4265, device='cuda:0'), 'validation_loss_bbox': tensor(0.1485, device='cuda:0'), 'validation_loss_giou': tensor(0.5208, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4596, device='cuda:0'), 'train_loss_bbox': tensor(0.1629, device='cuda:0'), 'train_loss_giou': tensor(0.3953, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2883, device='cuda:0'), 'validation_loss_ce': tensor(0.4253, device='cuda:0'), 'validation_loss_bbox': tensor(0.1578, device='cuda:0'), 'validation_loss_giou': tensor(0.5371, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8043, device='cuda:0'), 'train_loss_ce': tensor(0.3768, device='cuda:0'), 'train_loss_bbox': tensor(0.1945, device='cuda:0'), 'train_loss_giou': tensor(0.7276, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1758, device='cuda:0'), 'validation_loss_ce': tensor(0.4248, device='cuda:0'), 'validation_loss_bbox': tensor(0.1513, device='cuda:0'), 'validation_loss_giou': tensor(0.4972, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2134, device='cuda:0'), 'train_loss_ce': tensor(0.4331, device='cuda:0'), 'train_loss_bbox': tensor(0.1372, device='cuda:0'), 'train_loss_giou': tensor(0.5471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1775, device='cuda:0'), 'validation_loss_ce': tensor(0.4161, device='cuda:0'), 'validation_loss_bbox': tensor(0.1526, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1333, device='cuda:0'), 'train_loss_ce': tensor(0.3773, device='cuda:0'), 'train_loss_bbox': tensor(0.1440, device='cuda:0'), 'train_loss_giou': tensor(0.5179, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1012, device='cuda:0'), 'validation_loss_ce': tensor(0.4169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4124, device='cuda:0'), 'train_loss_ce': tensor(0.4025, device='cuda:0'), 'train_loss_bbox': tensor(0.1789, device='cuda:0'

Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +158 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/detr-resnet-50",
3
+ "activation_dropout": 0.0,
4
+ "activation_function": "relu",
5
+ "architectures": [
6
+ "DetrForObjectDetection"
7
+ ],
8
+ "attention_dropout": 0.0,
9
+ "auxiliary_loss": false,
10
+ "backbone": null,
11
+ "backbone_config": {
12
+ "_name_or_path": "",
13
+ "add_cross_attention": false,
14
+ "architectures": null,
15
+ "bad_words_ids": null,
16
+ "begin_suppress_tokens": null,
17
+ "bos_token_id": null,
18
+ "chunk_size_feed_forward": 0,
19
+ "cross_attention_hidden_size": null,
20
+ "decoder_start_token_id": null,
21
+ "depths": [
22
+ 3,
23
+ 4,
24
+ 6,
25
+ 3
26
+ ],
27
+ "diversity_penalty": 0.0,
28
+ "do_sample": false,
29
+ "downsample_in_bottleneck": false,
30
+ "downsample_in_first_stage": false,
31
+ "early_stopping": false,
32
+ "embedding_size": 64,
33
+ "encoder_no_repeat_ngram_size": 0,
34
+ "eos_token_id": null,
35
+ "exponential_decay_length_penalty": null,
36
+ "finetuning_task": null,
37
+ "forced_bos_token_id": null,
38
+ "forced_eos_token_id": null,
39
+ "hidden_act": "relu",
40
+ "hidden_sizes": [
41
+ 256,
42
+ 512,
43
+ 1024,
44
+ 2048
45
+ ],
46
+ "id2label": {
47
+ "0": "LABEL_0",
48
+ "1": "LABEL_1"
49
+ },
50
+ "is_decoder": false,
51
+ "is_encoder_decoder": false,
52
+ "label2id": {
53
+ "LABEL_0": 0,
54
+ "LABEL_1": 1
55
+ },
56
+ "layer_type": "bottleneck",
57
+ "length_penalty": 1.0,
58
+ "max_length": 20,
59
+ "min_length": 0,
60
+ "model_type": "resnet",
61
+ "no_repeat_ngram_size": 0,
62
+ "num_beam_groups": 1,
63
+ "num_beams": 1,
64
+ "num_channels": 3,
65
+ "num_return_sequences": 1,
66
+ "out_features": [
67
+ "stage4"
68
+ ],
69
+ "out_indices": [
70
+ 4
71
+ ],
72
+ "output_attentions": false,
73
+ "output_hidden_states": false,
74
+ "output_scores": false,
75
+ "pad_token_id": null,
76
+ "prefix": null,
77
+ "problem_type": null,
78
+ "pruned_heads": {},
79
+ "remove_invalid_values": false,
80
+ "repetition_penalty": 1.0,
81
+ "return_dict": true,
82
+ "return_dict_in_generate": false,
83
+ "sep_token_id": null,
84
+ "stage_names": [
85
+ "stem",
86
+ "stage1",
87
+ "stage2",
88
+ "stage3",
89
+ "stage4"
90
+ ],
91
+ "suppress_tokens": null,
92
+ "task_specific_params": null,
93
+ "temperature": 1.0,
94
+ "tf_legacy_loss": false,
95
+ "tie_encoder_decoder": false,
96
+ "tie_word_embeddings": true,
97
+ "tokenizer_class": null,
98
+ "top_k": 50,
99
+ "top_p": 1.0,
100
+ "torch_dtype": null,
101
+ "torchscript": false,
102
+ "typical_p": 1.0,
103
+ "use_bfloat16": false
104
+ },
105
+ "backbone_kwargs": null,
106
+ "bbox_cost": 5,
107
+ "bbox_loss_coefficient": 5,
108
+ "class_cost": 1,
109
+ "d_model": 256,
110
+ "decoder_attention_heads": 8,
111
+ "decoder_ffn_dim": 2048,
112
+ "decoder_layerdrop": 0.0,
113
+ "decoder_layers": 6,
114
+ "dice_loss_coefficient": 1,
115
+ "dilation": null,
116
+ "dropout": 0.1,
117
+ "encoder_attention_heads": 8,
118
+ "encoder_ffn_dim": 2048,
119
+ "encoder_layerdrop": 0.0,
120
+ "encoder_layers": 6,
121
+ "eos_coefficient": 0.1,
122
+ "giou_cost": 2,
123
+ "giou_loss_coefficient": 2,
124
+ "id2label": {
125
+ "0": "LABEL_0",
126
+ "1": "LABEL_1",
127
+ "2": "LABEL_2",
128
+ "3": "LABEL_3",
129
+ "4": "LABEL_4",
130
+ "5": "LABEL_5",
131
+ "6": "LABEL_6",
132
+ "7": "LABEL_7"
133
+ },
134
+ "init_std": 0.02,
135
+ "init_xavier_std": 1.0,
136
+ "is_encoder_decoder": true,
137
+ "label2id": {
138
+ "LABEL_0": 0,
139
+ "LABEL_1": 1,
140
+ "LABEL_2": 2,
141
+ "LABEL_3": 3,
142
+ "LABEL_4": 4,
143
+ "LABEL_5": 5,
144
+ "LABEL_6": 6,
145
+ "LABEL_7": 7
146
+ },
147
+ "mask_loss_coefficient": 1,
148
+ "model_type": "detr",
149
+ "num_channels": 3,
150
+ "num_hidden_layers": 6,
151
+ "num_queries": 100,
152
+ "position_embedding_type": "sine",
153
+ "scale_embedding": false,
154
+ "torch_dtype": "float32",
155
+ "transformers_version": "4.42.3",
156
+ "use_pretrained_backbone": null,
157
+ "use_timm_backbone": false
158
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469cff4c9b904c823e9835938764545407bc5a82ea23769b590e7c9ac954119c
3
+ size 166510924