---
Browse fileslibrary_name: transformers
tags: []
---
## Original result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.007
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.012
```
## After training result
```
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.014
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.032
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.017
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.014
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.077
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.135
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.168
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168
```
## Config
- dataset: NIH
- original model: facebook/detr-resnet-50
- lr: 0.0001
- max_epochs: 200
## Logging
### Training process
```
{'validation_loss': tensor(6.4207, device='cuda:0'), 'validation_loss_ce': tensor(2.0609, device='cuda:0'), 'validation_loss_bbox': tensor(0.5410, device='cuda:0'), 'validation_loss_giou': tensor(0.8274, device='cuda:0'), 'validation_cardinality_error': tensor(84.9688, device='cuda:0')}
{'training_loss': tensor(2.3578, device='cuda:0'), 'train_loss_ce': tensor(0.5497, device='cuda:0'), 'train_loss_bbox': tensor(0.1655, device='cuda:0'), 'train_loss_giou': tensor(0.4904, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(3.0166, device='cuda:0'), 'validation_loss_ce': tensor(0.5406, device='cuda:0'), 'validation_loss_bbox': tensor(0.2461, device='cuda:0'), 'validation_loss_giou': tensor(0.6227, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6157, device='cuda:0'), 'train_loss_ce': tensor(0.4145, device='cuda:0'), 'train_loss_bbox': tensor(0.2141, device='cuda:0'), 'train_loss_giou': tensor(0.5653, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6287, device='cuda:0'), 'validation_loss_ce': tensor(0.4480, device='cuda:0'), 'validation_loss_bbox': tensor(0.1945, device='cuda:0'), 'validation_loss_giou': tensor(0.6040, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.7792, device='cuda:0'), 'train_loss_ce': tensor(0.4003, device='cuda:0'), 'train_loss_bbox': tensor(0.1783, device='cuda:0'), 'train_loss_giou': tensor(0.7436, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.4423, device='cuda:0'), 'validation_loss_ce': tensor(0.4439, device='cuda:0'), 'validation_loss_bbox': tensor(0.1715, device='cuda:0'), 'validation_loss_giou': tensor(0.5705, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(3.0499, device='cuda:0'), 'train_loss_ce': tensor(0.4943, device='cuda:0'), 'train_loss_bbox': tensor(0.2466, device='cuda:0'), 'train_loss_giou': tensor(0.6613, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3473, device='cuda:0'), 'validation_loss_ce': tensor(0.4454, device='cuda:0'), 'validation_loss_bbox': tensor(0.1586, device='cuda:0'), 'validation_loss_giou': tensor(0.5544, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.5991, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1607, device='cuda:0'), 'train_loss_giou': tensor(0.6971, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2988, device='cuda:0'), 'validation_loss_ce': tensor(0.4328, device='cuda:0'), 'validation_loss_bbox': tensor(0.1548, device='cuda:0'), 'validation_loss_giou': tensor(0.5460, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.6833, device='cuda:0'), 'train_loss_ce': tensor(0.4014, device='cuda:0'), 'train_loss_bbox': tensor(0.1728, device='cuda:0'), 'train_loss_giou': tensor(0.7090, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.6458, device='cuda:0'), 'validation_loss_ce': tensor(0.4345, device='cuda:0'), 'validation_loss_bbox': tensor(0.1837, device='cuda:0'), 'validation_loss_giou': tensor(0.6464, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2738, device='cuda:0'), 'train_loss_ce': tensor(0.4427, device='cuda:0'), 'train_loss_bbox': tensor(0.1527, device='cuda:0'), 'train_loss_giou': tensor(0.5337, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3650, device='cuda:0'), 'validation_loss_ce': tensor(0.4310, device='cuda:0'), 'validation_loss_bbox': tensor(0.1683, device='cuda:0'), 'validation_loss_giou': tensor(0.5463, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2507, device='cuda:0'), 'train_loss_ce': tensor(0.4785, device='cuda:0'), 'train_loss_bbox': tensor(0.1342, device='cuda:0'), 'train_loss_giou': tensor(0.5507, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.3450, device='cuda:0'), 'validation_loss_ce': tensor(0.4320, device='cuda:0'), 'validation_loss_bbox': tensor(0.1631, device='cuda:0'), 'validation_loss_giou': tensor(0.5487, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.3232, device='cuda:0'), 'train_loss_ce': tensor(0.4610, device='cuda:0'), 'train_loss_bbox': tensor(0.1449, device='cuda:0'), 'train_loss_giou': tensor(0.5689, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2947, device='cuda:0'), 'validation_loss_ce': tensor(0.4268, device='cuda:0'), 'validation_loss_bbox': tensor(0.1617, device='cuda:0'), 'validation_loss_giou': tensor(0.5297, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2340, device='cuda:0'), 'train_loss_ce': tensor(0.3145, device='cuda:0'), 'train_loss_bbox': tensor(0.1381, device='cuda:0'), 'train_loss_giou': tensor(0.6146, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2105, device='cuda:0'), 'validation_loss_ce': tensor(0.4265, device='cuda:0'), 'validation_loss_bbox': tensor(0.1485, device='cuda:0'), 'validation_loss_giou': tensor(0.5208, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.0645, device='cuda:0'), 'train_loss_ce': tensor(0.4596, device='cuda:0'), 'train_loss_bbox': tensor(0.1629, device='cuda:0'), 'train_loss_giou': tensor(0.3953, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.2883, device='cuda:0'), 'validation_loss_ce': tensor(0.4253, device='cuda:0'), 'validation_loss_bbox': tensor(0.1578, device='cuda:0'), 'validation_loss_giou': tensor(0.5371, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.8043, device='cuda:0'), 'train_loss_ce': tensor(0.3768, device='cuda:0'), 'train_loss_bbox': tensor(0.1945, device='cuda:0'), 'train_loss_giou': tensor(0.7276, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1758, device='cuda:0'), 'validation_loss_ce': tensor(0.4248, device='cuda:0'), 'validation_loss_bbox': tensor(0.1513, device='cuda:0'), 'validation_loss_giou': tensor(0.4972, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.2134, device='cuda:0'), 'train_loss_ce': tensor(0.4331, device='cuda:0'), 'train_loss_bbox': tensor(0.1372, device='cuda:0'), 'train_loss_giou': tensor(0.5471, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1775, device='cuda:0'), 'validation_loss_ce': tensor(0.4161, device='cuda:0'), 'validation_loss_bbox': tensor(0.1526, device='cuda:0'), 'validation_loss_giou': tensor(0.4992, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.1333, device='cuda:0'), 'train_loss_ce': tensor(0.3773, device='cuda:0'), 'train_loss_bbox': tensor(0.1440, device='cuda:0'), 'train_loss_giou': tensor(0.5179, device='cuda:0'), 'train_cardinality_error': tensor(1., device='cuda:0'), 'validation_loss': tensor(2.1012, device='cuda:0'), 'validation_loss_ce': tensor(0.4169, device='cuda:0'), 'validation_loss_bbox': tensor(0.1385, device='cuda:0'), 'validation_loss_giou': tensor(0.4959, device='cuda:0'), 'validation_cardinality_error': tensor(1., device='cuda:0')}
{'training_loss': tensor(2.4124, device='cuda:0'), 'train_loss_ce': tensor(0.4025, device='cuda:0'), 'train_loss_bbox': tensor(0.1789, device='cuda:0'
- README.md +199 -0
- config.json +158 -0
- model.safetensors +3 -0
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/detr-resnet-50",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"activation_function": "relu",
|
5 |
+
"architectures": [
|
6 |
+
"DetrForObjectDetection"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"auxiliary_loss": false,
|
10 |
+
"backbone": null,
|
11 |
+
"backbone_config": {
|
12 |
+
"_name_or_path": "",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": null,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": null,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"decoder_start_token_id": null,
|
21 |
+
"depths": [
|
22 |
+
3,
|
23 |
+
4,
|
24 |
+
6,
|
25 |
+
3
|
26 |
+
],
|
27 |
+
"diversity_penalty": 0.0,
|
28 |
+
"do_sample": false,
|
29 |
+
"downsample_in_bottleneck": false,
|
30 |
+
"downsample_in_first_stage": false,
|
31 |
+
"early_stopping": false,
|
32 |
+
"embedding_size": 64,
|
33 |
+
"encoder_no_repeat_ngram_size": 0,
|
34 |
+
"eos_token_id": null,
|
35 |
+
"exponential_decay_length_penalty": null,
|
36 |
+
"finetuning_task": null,
|
37 |
+
"forced_bos_token_id": null,
|
38 |
+
"forced_eos_token_id": null,
|
39 |
+
"hidden_act": "relu",
|
40 |
+
"hidden_sizes": [
|
41 |
+
256,
|
42 |
+
512,
|
43 |
+
1024,
|
44 |
+
2048
|
45 |
+
],
|
46 |
+
"id2label": {
|
47 |
+
"0": "LABEL_0",
|
48 |
+
"1": "LABEL_1"
|
49 |
+
},
|
50 |
+
"is_decoder": false,
|
51 |
+
"is_encoder_decoder": false,
|
52 |
+
"label2id": {
|
53 |
+
"LABEL_0": 0,
|
54 |
+
"LABEL_1": 1
|
55 |
+
},
|
56 |
+
"layer_type": "bottleneck",
|
57 |
+
"length_penalty": 1.0,
|
58 |
+
"max_length": 20,
|
59 |
+
"min_length": 0,
|
60 |
+
"model_type": "resnet",
|
61 |
+
"no_repeat_ngram_size": 0,
|
62 |
+
"num_beam_groups": 1,
|
63 |
+
"num_beams": 1,
|
64 |
+
"num_channels": 3,
|
65 |
+
"num_return_sequences": 1,
|
66 |
+
"out_features": [
|
67 |
+
"stage4"
|
68 |
+
],
|
69 |
+
"out_indices": [
|
70 |
+
4
|
71 |
+
],
|
72 |
+
"output_attentions": false,
|
73 |
+
"output_hidden_states": false,
|
74 |
+
"output_scores": false,
|
75 |
+
"pad_token_id": null,
|
76 |
+
"prefix": null,
|
77 |
+
"problem_type": null,
|
78 |
+
"pruned_heads": {},
|
79 |
+
"remove_invalid_values": false,
|
80 |
+
"repetition_penalty": 1.0,
|
81 |
+
"return_dict": true,
|
82 |
+
"return_dict_in_generate": false,
|
83 |
+
"sep_token_id": null,
|
84 |
+
"stage_names": [
|
85 |
+
"stem",
|
86 |
+
"stage1",
|
87 |
+
"stage2",
|
88 |
+
"stage3",
|
89 |
+
"stage4"
|
90 |
+
],
|
91 |
+
"suppress_tokens": null,
|
92 |
+
"task_specific_params": null,
|
93 |
+
"temperature": 1.0,
|
94 |
+
"tf_legacy_loss": false,
|
95 |
+
"tie_encoder_decoder": false,
|
96 |
+
"tie_word_embeddings": true,
|
97 |
+
"tokenizer_class": null,
|
98 |
+
"top_k": 50,
|
99 |
+
"top_p": 1.0,
|
100 |
+
"torch_dtype": null,
|
101 |
+
"torchscript": false,
|
102 |
+
"typical_p": 1.0,
|
103 |
+
"use_bfloat16": false
|
104 |
+
},
|
105 |
+
"backbone_kwargs": null,
|
106 |
+
"bbox_cost": 5,
|
107 |
+
"bbox_loss_coefficient": 5,
|
108 |
+
"class_cost": 1,
|
109 |
+
"d_model": 256,
|
110 |
+
"decoder_attention_heads": 8,
|
111 |
+
"decoder_ffn_dim": 2048,
|
112 |
+
"decoder_layerdrop": 0.0,
|
113 |
+
"decoder_layers": 6,
|
114 |
+
"dice_loss_coefficient": 1,
|
115 |
+
"dilation": null,
|
116 |
+
"dropout": 0.1,
|
117 |
+
"encoder_attention_heads": 8,
|
118 |
+
"encoder_ffn_dim": 2048,
|
119 |
+
"encoder_layerdrop": 0.0,
|
120 |
+
"encoder_layers": 6,
|
121 |
+
"eos_coefficient": 0.1,
|
122 |
+
"giou_cost": 2,
|
123 |
+
"giou_loss_coefficient": 2,
|
124 |
+
"id2label": {
|
125 |
+
"0": "LABEL_0",
|
126 |
+
"1": "LABEL_1",
|
127 |
+
"2": "LABEL_2",
|
128 |
+
"3": "LABEL_3",
|
129 |
+
"4": "LABEL_4",
|
130 |
+
"5": "LABEL_5",
|
131 |
+
"6": "LABEL_6",
|
132 |
+
"7": "LABEL_7"
|
133 |
+
},
|
134 |
+
"init_std": 0.02,
|
135 |
+
"init_xavier_std": 1.0,
|
136 |
+
"is_encoder_decoder": true,
|
137 |
+
"label2id": {
|
138 |
+
"LABEL_0": 0,
|
139 |
+
"LABEL_1": 1,
|
140 |
+
"LABEL_2": 2,
|
141 |
+
"LABEL_3": 3,
|
142 |
+
"LABEL_4": 4,
|
143 |
+
"LABEL_5": 5,
|
144 |
+
"LABEL_6": 6,
|
145 |
+
"LABEL_7": 7
|
146 |
+
},
|
147 |
+
"mask_loss_coefficient": 1,
|
148 |
+
"model_type": "detr",
|
149 |
+
"num_channels": 3,
|
150 |
+
"num_hidden_layers": 6,
|
151 |
+
"num_queries": 100,
|
152 |
+
"position_embedding_type": "sine",
|
153 |
+
"scale_embedding": false,
|
154 |
+
"torch_dtype": "float32",
|
155 |
+
"transformers_version": "4.42.3",
|
156 |
+
"use_pretrained_backbone": null,
|
157 |
+
"use_timm_backbone": false
|
158 |
+
}
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469cff4c9b904c823e9835938764545407bc5a82ea23769b590e7c9ac954119c
|
3 |
+
size 166510924
|