kazemnejad
commited on
Upload CustomDecoderOnlyT5
Browse files- config.json +37 -0
- configuration_custom_t5.py +40 -0
- generation_config.json +7 -0
- modeling_custom_t5.py +1416 -0
- modeling_t5.py +1821 -0
- pytorch_model.bin +3 -0
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"CustomDecoderOnlyT5"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_custom_t5.CustomT5Config",
|
7 |
+
"AutoModelForCausalLM": "modeling_custom_t5.CustomDecoderOnlyT5"
|
8 |
+
},
|
9 |
+
"classifier_dropout": 0.0,
|
10 |
+
"d_ff": 16384,
|
11 |
+
"d_kv": 128,
|
12 |
+
"d_model": 1024,
|
13 |
+
"decoder_start_token_id": 0,
|
14 |
+
"dense_act_fn": "relu",
|
15 |
+
"dropout_rate": 0.1,
|
16 |
+
"eos_token_id": 1,
|
17 |
+
"feed_forward_proj": "relu",
|
18 |
+
"initializer_factor": 1.0,
|
19 |
+
"is_decoder": true,
|
20 |
+
"is_encoder_decoder": false,
|
21 |
+
"is_gated_act": false,
|
22 |
+
"layer_norm_epsilon": 1e-06,
|
23 |
+
"model_type": "custom_decoder_only_t5",
|
24 |
+
"n_positions": 1024,
|
25 |
+
"num_decoder_layers": 24,
|
26 |
+
"num_heads": 32,
|
27 |
+
"num_layers": 24,
|
28 |
+
"output_past": true,
|
29 |
+
"pad_token_id": 0,
|
30 |
+
"position_encoding_type": "alibi",
|
31 |
+
"relative_attention_max_distance": 128,
|
32 |
+
"relative_attention_num_buckets": 32,
|
33 |
+
"torch_dtype": "float32",
|
34 |
+
"transformers_version": "4.31.0",
|
35 |
+
"use_cache": true,
|
36 |
+
"vocab_size": 49152
|
37 |
+
}
|
configuration_custom_t5.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import T5Config
|
2 |
+
|
3 |
+
POSITION_ENCODING_REL_T5_BIAS = "t5_relative_bias"
|
4 |
+
POSITION_ENCODING_REL_TRANSFORMER_XL = "transformer_xl_relative_encoding"
|
5 |
+
POSITION_ENCODING_ROTARY = "rotary"
|
6 |
+
POSITION_ENCODING_ROTARY_RERUN = "rotary_rerun"
|
7 |
+
POSITION_ENCODING_ROTARY_NEW = "new_rotary"
|
8 |
+
POSITION_ENCODING_ABS_LEARNED = "abs_learned"
|
9 |
+
POSITION_ENCODING_ABS_SINUSOID = "abs_sinusoid"
|
10 |
+
POSITION_ENCODING_ALiBi = "alibi"
|
11 |
+
POSITION_ENCODING_ALiBi_LEARNED = "alibi_learned"
|
12 |
+
POSITION_ENCODING_NONE = "none"
|
13 |
+
POSITION_ENCODING_NONE_WINDOW = "none_window"
|
14 |
+
|
15 |
+
|
16 |
+
class CustomT5Config(T5Config):
|
17 |
+
model_type = "custom_decoder_only_t5"
|
18 |
+
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
position_encoding_type=POSITION_ENCODING_REL_T5_BIAS,
|
22 |
+
**kwargs,
|
23 |
+
):
|
24 |
+
if position_encoding_type not in [
|
25 |
+
POSITION_ENCODING_ALiBi,
|
26 |
+
POSITION_ENCODING_ALiBi_LEARNED,
|
27 |
+
POSITION_ENCODING_ABS_LEARNED,
|
28 |
+
POSITION_ENCODING_ABS_SINUSOID,
|
29 |
+
POSITION_ENCODING_REL_T5_BIAS,
|
30 |
+
POSITION_ENCODING_REL_TRANSFORMER_XL,
|
31 |
+
POSITION_ENCODING_ROTARY,
|
32 |
+
POSITION_ENCODING_ROTARY_NEW,
|
33 |
+
POSITION_ENCODING_NONE,
|
34 |
+
POSITION_ENCODING_NONE_WINDOW,
|
35 |
+
]:
|
36 |
+
raise ValueError(
|
37 |
+
f"Invalid position_encoding_type: {position_encoding_type}"
|
38 |
+
)
|
39 |
+
self.position_encoding_type = position_encoding_type
|
40 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"decoder_start_token_id": 0,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.31.0"
|
7 |
+
}
|
modeling_custom_t5.py
ADDED
@@ -0,0 +1,1416 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import math
|
3 |
+
import os
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from pathlib import Path
|
6 |
+
from typing import Optional, Tuple
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import CrossEntropyLoss
|
11 |
+
from torch.utils.checkpoint import checkpoint
|
12 |
+
from transformers import T5Config
|
13 |
+
from transformers.modeling_outputs import (
|
14 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
15 |
+
)
|
16 |
+
from transformers.utils import ModelOutput
|
17 |
+
from transformers.utils.model_parallel_utils import get_device_map, assert_device_map
|
18 |
+
|
19 |
+
from .configuration_custom_t5 import (
|
20 |
+
POSITION_ENCODING_REL_T5_BIAS,
|
21 |
+
POSITION_ENCODING_REL_TRANSFORMER_XL,
|
22 |
+
POSITION_ENCODING_ROTARY,
|
23 |
+
POSITION_ENCODING_ROTARY_NEW,
|
24 |
+
POSITION_ENCODING_ABS_LEARNED,
|
25 |
+
POSITION_ENCODING_ABS_SINUSOID,
|
26 |
+
POSITION_ENCODING_ALiBi,
|
27 |
+
POSITION_ENCODING_ALiBi_LEARNED,
|
28 |
+
POSITION_ENCODING_NONE,
|
29 |
+
POSITION_ENCODING_NONE_WINDOW,
|
30 |
+
CustomT5Config,
|
31 |
+
)
|
32 |
+
from .modeling_t5 import (
|
33 |
+
T5Stack,
|
34 |
+
T5PreTrainedModel,
|
35 |
+
T5Block,
|
36 |
+
T5LayerNorm,
|
37 |
+
T5LayerFF,
|
38 |
+
T5LayerSelfAttention,
|
39 |
+
T5Attention,
|
40 |
+
T5LayerCrossAttention,
|
41 |
+
)
|
42 |
+
|
43 |
+
logger = logging.getLogger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
@dataclass
|
47 |
+
class CausalLMOutputWithPastAndLoss(ModelOutput):
|
48 |
+
"""
|
49 |
+
Base class for causal language model (or autoregressive) outputs.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
53 |
+
Language modeling loss (for next-token prediction).
|
54 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
55 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
56 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
57 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
58 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
59 |
+
|
60 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
61 |
+
`past_key_values` input) to speed up sequential decoding.
|
62 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
63 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
64 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
65 |
+
|
66 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
67 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
68 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
69 |
+
sequence_length)`.
|
70 |
+
|
71 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
72 |
+
heads.
|
73 |
+
"""
|
74 |
+
|
75 |
+
loss: Optional[torch.FloatTensor] = None
|
76 |
+
logits: torch.FloatTensor = None
|
77 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
78 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
79 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
80 |
+
non_reduced_loss: Optional[torch.FloatTensor] = None
|
81 |
+
|
82 |
+
|
83 |
+
def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
|
84 |
+
dim = x.shape[-1]
|
85 |
+
if seq_len is None:
|
86 |
+
seq_len = x.shape[seq_dim]
|
87 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
|
88 |
+
sinusoid_inp = (
|
89 |
+
torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq)
|
90 |
+
.to(x.device)
|
91 |
+
.float()
|
92 |
+
)
|
93 |
+
return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)
|
94 |
+
|
95 |
+
|
96 |
+
def rotate_every_two(x):
|
97 |
+
"""
|
98 |
+
Example: [a, b, c, d] -> [-b, a, -d, c]
|
99 |
+
"""
|
100 |
+
x1 = x[:, :, :, ::2]
|
101 |
+
x2 = x[:, :, :, 1::2]
|
102 |
+
x = torch.stack((-x2, x1), axis=-1)
|
103 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
104 |
+
|
105 |
+
|
106 |
+
def apply_rotary_pos_emb(x, sincos, offset=0):
|
107 |
+
sin, cos = map(
|
108 |
+
lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(
|
109 |
+
2, 3
|
110 |
+
),
|
111 |
+
sincos,
|
112 |
+
)
|
113 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
114 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
115 |
+
|
116 |
+
|
117 |
+
def apply_rotary_pos_emb_new(x, sincos, offset=0):
|
118 |
+
sin, cos = map(
|
119 |
+
lambda t: t[:, :, None, :].repeat_interleave(2, 3),
|
120 |
+
sincos,
|
121 |
+
)
|
122 |
+
# einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
|
123 |
+
return (x * cos) + (rotate_every_two(x) * sin)
|
124 |
+
|
125 |
+
|
126 |
+
class PositionalEmbedding(nn.Module):
|
127 |
+
def __init__(self, demb):
|
128 |
+
super().__init__()
|
129 |
+
|
130 |
+
self.demb = demb
|
131 |
+
|
132 |
+
inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
|
133 |
+
self.register_buffer("inv_freq", inv_freq)
|
134 |
+
|
135 |
+
def forward(self, pos_seq, bsz=None):
|
136 |
+
sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
|
137 |
+
pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
|
138 |
+
|
139 |
+
if bsz is not None:
|
140 |
+
return pos_emb[None, :, :].expand(bsz, -1, -1)
|
141 |
+
else:
|
142 |
+
return pos_emb[None, :, :]
|
143 |
+
|
144 |
+
|
145 |
+
class FixedAbsolutePositionalEmbedding(nn.Module):
|
146 |
+
def __init__(self, dim):
|
147 |
+
super().__init__()
|
148 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
|
149 |
+
t = torch.arange(16384).type_as(inv_freq)
|
150 |
+
sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq)
|
151 |
+
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
|
152 |
+
self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
|
153 |
+
|
154 |
+
def forward(self, position_ids: torch.Tensor):
|
155 |
+
return self.embed(position_ids.long())
|
156 |
+
|
157 |
+
|
158 |
+
class FixedRotaryPositionalEmbedding(nn.Module):
|
159 |
+
def __init__(
|
160 |
+
self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384
|
161 |
+
):
|
162 |
+
super().__init__()
|
163 |
+
# This is an inverse frequency tensor
|
164 |
+
# Each dimension has a higher denominator than the previous one
|
165 |
+
# So, the frequency will be lower for higher dimensions
|
166 |
+
inv_freq = 1.0 / (
|
167 |
+
rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim)
|
168 |
+
) # [rotary_dim/2]
|
169 |
+
|
170 |
+
# Now, we create frequencies for each position
|
171 |
+
t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype)
|
172 |
+
freqs = torch.einsum("i,j->ij", t, inv_freq) # [max_position, rotary_dim/2]
|
173 |
+
|
174 |
+
sins = torch.sin(freqs)
|
175 |
+
coss = torch.cos(freqs)
|
176 |
+
|
177 |
+
emb = torch.cat([sins, coss], dim=-1) # [max_position, rotary_dim]
|
178 |
+
self.embed = nn.Embedding.from_pretrained(emb, freeze=True)
|
179 |
+
|
180 |
+
def forward(self, position_ids: torch.Tensor):
|
181 |
+
return self.embed(position_ids.long())
|
182 |
+
|
183 |
+
|
184 |
+
class CustomT5Attention(T5Attention):
|
185 |
+
def __init__(self, config: T5Config, has_relative_attention_bias=False):
|
186 |
+
super(T5Attention, self).__init__()
|
187 |
+
self.is_decoder = config.is_decoder
|
188 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
189 |
+
|
190 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
191 |
+
self.d_model = config.d_model
|
192 |
+
self.key_value_proj_dim = config.d_kv
|
193 |
+
self.d_head = config.d_kv
|
194 |
+
self.n_heads = config.num_heads
|
195 |
+
self.dropout = config.dropout_rate
|
196 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
197 |
+
|
198 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
199 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
200 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
201 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
202 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
203 |
+
|
204 |
+
self.position_encoding_type = getattr(
|
205 |
+
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
|
206 |
+
)
|
207 |
+
|
208 |
+
if self.has_relative_attention_bias:
|
209 |
+
self.relative_attention_bias = nn.Embedding(
|
210 |
+
self.relative_attention_num_buckets, self.n_heads
|
211 |
+
)
|
212 |
+
|
213 |
+
if self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
|
214 |
+
self.r_r_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
|
215 |
+
nn.init.normal_(
|
216 |
+
self.r_r_bias, mean=0.0, std=config.initializer_factor * 0.2
|
217 |
+
)
|
218 |
+
self.r_w_bias = nn.Parameter(torch.FloatTensor(self.n_heads, self.d_head))
|
219 |
+
nn.init.normal_(
|
220 |
+
self.r_w_bias, mean=0.0, std=config.initializer_factor * 0.2
|
221 |
+
)
|
222 |
+
self.r = nn.Linear(self.d_model, self.n_heads * self.d_head, bias=False)
|
223 |
+
self.r.weight.data.normal_(
|
224 |
+
mean=0.0, std=config.initializer_factor * (self.d_model**-0.5)
|
225 |
+
)
|
226 |
+
self.pos_emb = PositionalEmbedding(self.d_model)
|
227 |
+
self.clamp_length = 1000
|
228 |
+
|
229 |
+
if self.position_encoding_type == POSITION_ENCODING_ROTARY:
|
230 |
+
self.rotary_dim = None
|
231 |
+
if getattr(config, "rotary_dim", None) is not None:
|
232 |
+
self.rotary_dim = config.rotary_dim
|
233 |
+
self.rotary_dim = int(0.25 * self.d_head)
|
234 |
+
|
235 |
+
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
|
236 |
+
# We hardcode the rotary dim to 25 percent of the head dim
|
237 |
+
self.rotary_dim = self.d_head // 4
|
238 |
+
|
239 |
+
self.pruned_heads = set()
|
240 |
+
self.gradient_checkpointing = False
|
241 |
+
|
242 |
+
def _rel_shift(self, x):
|
243 |
+
zero_pad_shape = x.size()[:2] + (x.size(2), 1)
|
244 |
+
zero_pad = torch.zeros(zero_pad_shape, device=x.device, dtype=x.dtype)
|
245 |
+
x_padded = torch.cat([zero_pad, x], dim=3)
|
246 |
+
x_padded_shape = x.size()[:2] + (x.size(3) + 1, x.size(2))
|
247 |
+
x_padded = x_padded.view(*x_padded_shape)
|
248 |
+
x = x_padded[:, :, 1:, :].view_as(x)
|
249 |
+
return x
|
250 |
+
|
251 |
+
def forward(
|
252 |
+
self,
|
253 |
+
hidden_states,
|
254 |
+
mask=None,
|
255 |
+
position_bias=None,
|
256 |
+
key_value_states=None,
|
257 |
+
past_key_value=None,
|
258 |
+
layer_head_mask=None,
|
259 |
+
query_length=None,
|
260 |
+
use_cache=False,
|
261 |
+
output_attentions=False,
|
262 |
+
):
|
263 |
+
"""
|
264 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
265 |
+
"""
|
266 |
+
# Input is (batch_size, seq_length, dim)
|
267 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
268 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
269 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
270 |
+
|
271 |
+
real_seq_length = seq_length
|
272 |
+
|
273 |
+
if past_key_value is not None:
|
274 |
+
assert (
|
275 |
+
len(past_key_value) == 2
|
276 |
+
), f"past_key_value should have 2 past states: keys and values. Got {len(past_key_value)} past states"
|
277 |
+
real_seq_length += (
|
278 |
+
past_key_value[0].shape[2] if query_length is None else query_length
|
279 |
+
)
|
280 |
+
|
281 |
+
key_length = (
|
282 |
+
real_seq_length if key_value_states is None else key_value_states.shape[1]
|
283 |
+
)
|
284 |
+
|
285 |
+
def shape(states):
|
286 |
+
"""projection"""
|
287 |
+
return states.view(
|
288 |
+
batch_size, -1, self.n_heads, self.key_value_proj_dim
|
289 |
+
).transpose(1, 2)
|
290 |
+
|
291 |
+
def unshape(states):
|
292 |
+
"""reshape"""
|
293 |
+
return (
|
294 |
+
states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
295 |
+
)
|
296 |
+
|
297 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
298 |
+
"""projects hidden states correctly to key/query states"""
|
299 |
+
if key_value_states is None:
|
300 |
+
# self-attn
|
301 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
302 |
+
hidden_states = shape(proj_layer(hidden_states))
|
303 |
+
elif past_key_value is None:
|
304 |
+
# cross-attn
|
305 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
306 |
+
hidden_states = shape(proj_layer(key_value_states))
|
307 |
+
|
308 |
+
if past_key_value is not None:
|
309 |
+
if key_value_states is None:
|
310 |
+
# self-attn
|
311 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
312 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
313 |
+
else:
|
314 |
+
# cross-attn
|
315 |
+
hidden_states = past_key_value
|
316 |
+
return hidden_states
|
317 |
+
|
318 |
+
# get query states
|
319 |
+
query_states = shape(
|
320 |
+
self.q(hidden_states)
|
321 |
+
) # (batch_size, n_heads, seq_length, dim_per_head)
|
322 |
+
|
323 |
+
if self.position_encoding_type in [
|
324 |
+
POSITION_ENCODING_ROTARY,
|
325 |
+
POSITION_ENCODING_ROTARY_NEW,
|
326 |
+
]:
|
327 |
+
key_states = shape(self.k(hidden_states))
|
328 |
+
else:
|
329 |
+
# get key/value states
|
330 |
+
key_states = project(
|
331 |
+
hidden_states,
|
332 |
+
self.k,
|
333 |
+
key_value_states,
|
334 |
+
past_key_value[0] if past_key_value is not None else None,
|
335 |
+
)
|
336 |
+
|
337 |
+
value_states = project(
|
338 |
+
hidden_states,
|
339 |
+
self.v,
|
340 |
+
key_value_states,
|
341 |
+
past_key_value[1] if past_key_value is not None else None,
|
342 |
+
)
|
343 |
+
|
344 |
+
attention_output_dict = {}
|
345 |
+
|
346 |
+
if self.position_encoding_type == POSITION_ENCODING_REL_T5_BIAS:
|
347 |
+
scores = torch.matmul(query_states, key_states.transpose(3, 2))
|
348 |
+
attention_output_dict["scores_before"] = scores
|
349 |
+
if position_bias is None:
|
350 |
+
if not self.has_relative_attention_bias:
|
351 |
+
position_bias = torch.zeros(
|
352 |
+
(1, self.n_heads, real_seq_length, key_length),
|
353 |
+
device=scores.device,
|
354 |
+
dtype=scores.dtype,
|
355 |
+
)
|
356 |
+
if self.gradient_checkpointing and self.training:
|
357 |
+
position_bias.requires_grad = True
|
358 |
+
else:
|
359 |
+
position_bias = self.compute_bias(real_seq_length, key_length)
|
360 |
+
|
361 |
+
# if key and values are already calculated
|
362 |
+
# we want only the last query position bias
|
363 |
+
if past_key_value is not None:
|
364 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
365 |
+
|
366 |
+
if mask is not None:
|
367 |
+
position_bias = (
|
368 |
+
position_bias + mask
|
369 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
370 |
+
|
371 |
+
scores += position_bias
|
372 |
+
elif self.position_encoding_type == POSITION_ENCODING_REL_TRANSFORMER_XL:
|
373 |
+
if position_bias is None:
|
374 |
+
pos_seq = torch.arange(
|
375 |
+
real_seq_length - 1,
|
376 |
+
-1,
|
377 |
+
-1.0,
|
378 |
+
device=hidden_states.device,
|
379 |
+
dtype=hidden_states.dtype,
|
380 |
+
)
|
381 |
+
if self.clamp_length > 0:
|
382 |
+
pos_seq = pos_seq.clamp_(max=self.clamp_length)
|
383 |
+
position_bias = self.pos_emb(pos_seq)
|
384 |
+
position_bias = nn.functional.dropout(
|
385 |
+
position_bias, p=self.dropout, training=self.training
|
386 |
+
)
|
387 |
+
|
388 |
+
position_embeds = position_bias # position embeds: [1, seq_len, d_model]
|
389 |
+
|
390 |
+
r_head_k = self.r(position_embeds) # [1, seq_len, n_head*d_head]
|
391 |
+
r_head_k = r_head_k.view(
|
392 |
+
position_embeds.shape[1], self.n_heads, self.d_head
|
393 |
+
) # [seq_len, n_head, d_head]
|
394 |
+
|
395 |
+
rw_head_q = query_states + self.r_w_bias[None, :, None, :]
|
396 |
+
AC = torch.einsum("bnqd,bnkd->bnqk", (rw_head_q, key_states))
|
397 |
+
|
398 |
+
rr_head_q = query_states + self.r_r_bias[None, :, None, :]
|
399 |
+
BD = torch.einsum("bnid,jnd->bnij", (rr_head_q, r_head_k))
|
400 |
+
BD = self._rel_shift(BD)
|
401 |
+
|
402 |
+
scores = AC + BD
|
403 |
+
|
404 |
+
if mask is not None:
|
405 |
+
scores += mask
|
406 |
+
elif self.position_encoding_type == POSITION_ENCODING_ROTARY:
|
407 |
+
r_seq_len = hidden_states.shape[1]
|
408 |
+
r_offset = 0
|
409 |
+
|
410 |
+
if past_key_value is not None:
|
411 |
+
r_offset = past_key_value[0].shape[2]
|
412 |
+
r_seq_len += r_offset
|
413 |
+
|
414 |
+
query_states = query_states.permute(0, 2, 1, 3)
|
415 |
+
key_states = key_states.permute(0, 2, 1, 3)
|
416 |
+
|
417 |
+
if self.rotary_dim is not None:
|
418 |
+
k_rot = key_states[:, :, :, : self.rotary_dim]
|
419 |
+
k_pass = key_states[:, :, :, self.rotary_dim :]
|
420 |
+
|
421 |
+
q_rot = query_states[:, :, :, : self.rotary_dim]
|
422 |
+
q_pass = query_states[:, :, :, self.rotary_dim :]
|
423 |
+
|
424 |
+
sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len)
|
425 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset)
|
426 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset)
|
427 |
+
|
428 |
+
if output_attentions:
|
429 |
+
scores_pass = torch.matmul(
|
430 |
+
q_pass.permute(0, 2, 1, 3),
|
431 |
+
k_pass.permute(0, 2, 1, 3).transpose(3, 2),
|
432 |
+
)
|
433 |
+
attention_output_dict["scores_pass"] = scores_pass
|
434 |
+
|
435 |
+
scores_rot = torch.matmul(
|
436 |
+
q_rot.permute(0, 2, 1, 3),
|
437 |
+
k_rot.permute(0, 2, 1, 3).transpose(3, 2),
|
438 |
+
)
|
439 |
+
attention_output_dict["scores_rot"] = scores_rot
|
440 |
+
|
441 |
+
key_states = torch.cat([k_rot, k_pass], dim=-1)
|
442 |
+
query_states = torch.cat([q_rot, q_pass], dim=-1)
|
443 |
+
else:
|
444 |
+
sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len)
|
445 |
+
key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset)
|
446 |
+
query_states = apply_rotary_pos_emb(
|
447 |
+
query_states, sincos, offset=r_offset
|
448 |
+
)
|
449 |
+
|
450 |
+
query_states = query_states.permute(0, 2, 1, 3)
|
451 |
+
key_states = key_states.permute(0, 2, 1, 3)
|
452 |
+
|
453 |
+
if past_key_value is not None:
|
454 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
455 |
+
|
456 |
+
scores = torch.matmul(
|
457 |
+
query_states, key_states.transpose(3, 2)
|
458 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
459 |
+
if mask is not None:
|
460 |
+
scores += mask # (batch_size, n_heads, seq_length, key_length)
|
461 |
+
|
462 |
+
elif self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
|
463 |
+
r_seq_len = hidden_states.shape[1]
|
464 |
+
r_offset = 0
|
465 |
+
|
466 |
+
if past_key_value is not None:
|
467 |
+
r_offset = past_key_value[0].shape[2]
|
468 |
+
r_seq_len += r_offset
|
469 |
+
|
470 |
+
query_states = query_states.permute(0, 2, 1, 3)
|
471 |
+
key_states = key_states.permute(0, 2, 1, 3)
|
472 |
+
|
473 |
+
if self.rotary_dim is not None:
|
474 |
+
k_rot = key_states[:, :, :, : self.rotary_dim]
|
475 |
+
k_pass = key_states[:, :, :, self.rotary_dim :]
|
476 |
+
|
477 |
+
q_rot = query_states[:, :, :, : self.rotary_dim]
|
478 |
+
q_pass = query_states[:, :, :, self.rotary_dim :]
|
479 |
+
|
480 |
+
sincos = position_bias
|
481 |
+
# sincos is just vector created by torch.cat([sin, cos], dim=-1)
|
482 |
+
# so we can just split it in half
|
483 |
+
sin = sincos[:, :, : self.rotary_dim // 2]
|
484 |
+
cos = sincos[:, :, self.rotary_dim // 2 :]
|
485 |
+
|
486 |
+
# We don't need to pass offset here, because we already used
|
487 |
+
# position_ids to retrieve correct sin and cos vectors
|
488 |
+
k_rot = apply_rotary_pos_emb_new(k_rot, (sin, cos))
|
489 |
+
q_rot = apply_rotary_pos_emb_new(q_rot, (sin, cos))
|
490 |
+
|
491 |
+
key_states = torch.cat([k_rot, k_pass], dim=-1)
|
492 |
+
query_states = torch.cat([q_rot, q_pass], dim=-1)
|
493 |
+
else:
|
494 |
+
raise ValueError("rotary_dim is None")
|
495 |
+
|
496 |
+
query_states = query_states.permute(0, 2, 1, 3)
|
497 |
+
key_states = key_states.permute(0, 2, 1, 3)
|
498 |
+
|
499 |
+
if past_key_value is not None:
|
500 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
501 |
+
|
502 |
+
scores = torch.matmul(
|
503 |
+
query_states, key_states.transpose(3, 2)
|
504 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
505 |
+
if mask is not None:
|
506 |
+
scores += mask # (batch_size, n_heads, seq_length, key_length)
|
507 |
+
elif self.position_encoding_type == POSITION_ENCODING_ALiBi:
|
508 |
+
scores = torch.matmul(query_states, key_states.transpose(3, 2))
|
509 |
+
attention_output_dict["scores_before"] = scores
|
510 |
+
|
511 |
+
alibi = position_bias
|
512 |
+
alibi = alibi.view(batch_size, self.n_heads, 1, key_length)
|
513 |
+
|
514 |
+
# if key and values are already calculated
|
515 |
+
# we want only the last query position bias
|
516 |
+
if past_key_value is not None:
|
517 |
+
alibi = alibi[:, :, -hidden_states.size(1) :, :]
|
518 |
+
|
519 |
+
if mask is not None:
|
520 |
+
alibi = alibi + mask # (batch_size, n_heads, seq_length, key_length)
|
521 |
+
|
522 |
+
scores += alibi
|
523 |
+
else:
|
524 |
+
assert (
|
525 |
+
self.position_encoding_type == POSITION_ENCODING_NONE
|
526 |
+
), f"Unknown position encoding type: {self.position_encoding_type}"
|
527 |
+
scores = torch.matmul(
|
528 |
+
query_states, key_states.transpose(3, 2)
|
529 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
530 |
+
if mask is not None:
|
531 |
+
scores += mask # (batch_size, n_heads, seq_length, key_length)
|
532 |
+
|
533 |
+
attention_output_dict["scores"] = scores
|
534 |
+
|
535 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
536 |
+
scores
|
537 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
538 |
+
attn_weights = nn.functional.dropout(
|
539 |
+
attn_weights, p=self.dropout, training=self.training
|
540 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
541 |
+
|
542 |
+
# Mask heads if we want to
|
543 |
+
if layer_head_mask is not None:
|
544 |
+
attn_weights = attn_weights * layer_head_mask
|
545 |
+
|
546 |
+
attention_output_dict["probs"] = attn_weights
|
547 |
+
|
548 |
+
attn_output = unshape(
|
549 |
+
torch.matmul(attn_weights, value_states)
|
550 |
+
) # (batch_size, seq_length, dim)
|
551 |
+
attn_output = self.o(attn_output)
|
552 |
+
|
553 |
+
present_key_value_state = (
|
554 |
+
(key_states, value_states) if (self.is_decoder and use_cache) else None
|
555 |
+
)
|
556 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
557 |
+
|
558 |
+
if output_attentions:
|
559 |
+
outputs = outputs + (attention_output_dict,)
|
560 |
+
return outputs
|
561 |
+
|
562 |
+
|
563 |
+
class CustomT5LayerSelfAttention(T5LayerSelfAttention):
|
564 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
565 |
+
super(T5LayerSelfAttention, self).__init__()
|
566 |
+
self.SelfAttention = CustomT5Attention(
|
567 |
+
config, has_relative_attention_bias=has_relative_attention_bias
|
568 |
+
)
|
569 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
570 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
571 |
+
|
572 |
+
|
573 |
+
class CustomT5Block(T5Block):
|
574 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
575 |
+
super(T5Block, self).__init__()
|
576 |
+
self.is_decoder = config.is_decoder
|
577 |
+
assert self.is_decoder
|
578 |
+
self.layer = nn.ModuleList()
|
579 |
+
self.layer.append(
|
580 |
+
CustomT5LayerSelfAttention(
|
581 |
+
config, has_relative_attention_bias=has_relative_attention_bias
|
582 |
+
)
|
583 |
+
)
|
584 |
+
if self.is_decoder:
|
585 |
+
self.layer.append(T5LayerCrossAttention(config))
|
586 |
+
|
587 |
+
self.layer.append(T5LayerFF(config))
|
588 |
+
|
589 |
+
|
590 |
+
def _make_causal_mask(
|
591 |
+
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
592 |
+
) -> torch.BoolTensor:
|
593 |
+
"""
|
594 |
+
Make causal mask used for self-attention.
|
595 |
+
"""
|
596 |
+
batch_size, target_length = input_ids_shape
|
597 |
+
mask = torch.empty(
|
598 |
+
(target_length, target_length + past_key_values_length),
|
599 |
+
dtype=torch.bool,
|
600 |
+
device=device,
|
601 |
+
)
|
602 |
+
# ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround
|
603 |
+
seq_ids = torch.arange(target_length, device=device)
|
604 |
+
mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :]
|
605 |
+
|
606 |
+
if past_key_values_length > 0:
|
607 |
+
mask[:, :past_key_values_length] = False
|
608 |
+
|
609 |
+
expanded_mask = mask[None, None, :, :].expand(
|
610 |
+
batch_size, 1, target_length, target_length + past_key_values_length
|
611 |
+
)
|
612 |
+
return expanded_mask
|
613 |
+
|
614 |
+
|
615 |
+
def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
616 |
+
"""
|
617 |
+
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
618 |
+
"""
|
619 |
+
batch_size, src_length = mask.shape
|
620 |
+
tgt_length = tgt_length if tgt_length is not None else src_length
|
621 |
+
|
622 |
+
expanded_mask = ~(mask[:, None, None, :].to(torch.bool))
|
623 |
+
return expanded_mask.expand(batch_size, 1, tgt_length, src_length)
|
624 |
+
|
625 |
+
|
626 |
+
def build_alibi_tensor(
|
627 |
+
attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype
|
628 |
+
) -> torch.Tensor:
|
629 |
+
"""
|
630 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
631 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
632 |
+
`softmax(l+a) = softmax(l)`. Based on
|
633 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
634 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
635 |
+
Args:
|
636 |
+
Returns tensor shaped (batch_size * num_heads, 1, max_seq_len)
|
637 |
+
attention_mask (`torch.Tensor`):
|
638 |
+
Token-wise attention mask, this should be of shape (batch_size, max_seq_len).
|
639 |
+
num_heads (`int`, *required*):
|
640 |
+
number of heads
|
641 |
+
dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`):
|
642 |
+
dtype of the output tensor
|
643 |
+
"""
|
644 |
+
if len(attention_mask.shape) == 2:
|
645 |
+
batch_size, seq_length = attention_mask.shape
|
646 |
+
elif len(attention_mask.shape) == 3:
|
647 |
+
batch_size, _, seq_length = attention_mask.shape
|
648 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
649 |
+
base = torch.tensor(
|
650 |
+
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))),
|
651 |
+
device=attention_mask.device,
|
652 |
+
dtype=torch.float32,
|
653 |
+
)
|
654 |
+
powers = torch.arange(
|
655 |
+
1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32
|
656 |
+
)
|
657 |
+
slopes = torch.pow(base, powers)
|
658 |
+
|
659 |
+
if closest_power_of_2 != num_heads:
|
660 |
+
extra_base = torch.tensor(
|
661 |
+
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))),
|
662 |
+
device=attention_mask.device,
|
663 |
+
dtype=torch.float32,
|
664 |
+
)
|
665 |
+
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
666 |
+
extra_powers = torch.arange(
|
667 |
+
1,
|
668 |
+
1 + 2 * num_remaining_heads,
|
669 |
+
2,
|
670 |
+
device=attention_mask.device,
|
671 |
+
dtype=torch.int32,
|
672 |
+
)
|
673 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
674 |
+
|
675 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
676 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
677 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
678 |
+
# => the query_length dimension will then be broadcasted correctly
|
679 |
+
# This is more or less identical to T5's relative position bias:
|
680 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
681 |
+
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
|
682 |
+
alibi = slopes[..., None] * arange_tensor
|
683 |
+
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
|
684 |
+
|
685 |
+
|
686 |
+
class CustomT5Stack(T5Stack):
|
687 |
+
def __init__(self, config, embed_tokens=None):
|
688 |
+
super(T5Stack, self).__init__(config)
|
689 |
+
|
690 |
+
self.embed_tokens = embed_tokens
|
691 |
+
self.is_decoder = config.is_decoder
|
692 |
+
self.position_encoding_type = getattr(
|
693 |
+
config, "position_encoding_type", POSITION_ENCODING_REL_T5_BIAS
|
694 |
+
)
|
695 |
+
|
696 |
+
logger.info(f"position_encoding_type: {self.position_encoding_type}")
|
697 |
+
|
698 |
+
self.block = nn.ModuleList(
|
699 |
+
[
|
700 |
+
CustomT5Block(config, has_relative_attention_bias=bool(i == 0))
|
701 |
+
for i in range(config.num_layers)
|
702 |
+
]
|
703 |
+
)
|
704 |
+
self.final_layer_norm = T5LayerNorm(
|
705 |
+
config.d_model, eps=config.layer_norm_epsilon
|
706 |
+
)
|
707 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
708 |
+
|
709 |
+
if self.position_encoding_type == POSITION_ENCODING_ABS_LEARNED:
|
710 |
+
self.wpe = nn.Embedding(2048, config.d_model)
|
711 |
+
parent_dir = Path(os.path.dirname(os.path.abspath(__file__)))
|
712 |
+
learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy"
|
713 |
+
if learned_embed_file.exists():
|
714 |
+
logger.info(
|
715 |
+
"Loading position embedding from {}".format(learned_embed_file)
|
716 |
+
)
|
717 |
+
import numpy as np
|
718 |
+
|
719 |
+
weight = np.load(str(learned_embed_file))
|
720 |
+
self.wpe.weight.data.copy_(torch.from_numpy(weight))
|
721 |
+
self.wpe.weight.requires_grad = False
|
722 |
+
else:
|
723 |
+
self.wpe.weight.data.normal_(
|
724 |
+
mean=0.0, std=config.initializer_factor * 1.0
|
725 |
+
)
|
726 |
+
|
727 |
+
if self.position_encoding_type == POSITION_ENCODING_ABS_SINUSOID:
|
728 |
+
self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)
|
729 |
+
|
730 |
+
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
|
731 |
+
# Rotary dim is X percentage of d_head
|
732 |
+
# Right now, we just hardcode X here following:
|
733 |
+
# https://github.com/huggingface/transformers/blob/v4.26.0/src/transformers/models/gpt_neox/configuration_gpt_neox.py
|
734 |
+
rotary_dim = int(config.d_kv * 0.25)
|
735 |
+
self.fixed_rotary_embedding = FixedRotaryPositionalEmbedding(
|
736 |
+
rotary_dim, max_position=4096
|
737 |
+
)
|
738 |
+
|
739 |
+
if self.position_encoding_type in [
|
740 |
+
POSITION_ENCODING_ALiBi,
|
741 |
+
POSITION_ENCODING_ALiBi_LEARNED,
|
742 |
+
]:
|
743 |
+
maxpos = 2048
|
744 |
+
attn_heads = config.num_heads
|
745 |
+
if self.position_encoding_type == POSITION_ENCODING_ALiBi_LEARNED:
|
746 |
+
self.learned_logslopes = nn.Parameter(
|
747 |
+
torch.log(torch.Tensor(self.get_slopes(attn_heads)))
|
748 |
+
)
|
749 |
+
else:
|
750 |
+
slopes = torch.Tensor(self.get_slopes(attn_heads))
|
751 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
|
752 |
+
maxpos
|
753 |
+
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
|
754 |
+
alibi = alibi.view(attn_heads, 1, maxpos)
|
755 |
+
self.register_buffer("alibi", alibi)
|
756 |
+
|
757 |
+
# Initialize weights and apply final processing
|
758 |
+
self.post_init()
|
759 |
+
# Model parallel
|
760 |
+
self.model_parallel = False
|
761 |
+
self.device_map = None
|
762 |
+
self.gradient_checkpointing = False
|
763 |
+
|
764 |
+
self.window_size = 80 # only used for none_windowed
|
765 |
+
|
766 |
+
def _alibi_prepare_attn_mask(
|
767 |
+
self,
|
768 |
+
attention_mask: torch.Tensor,
|
769 |
+
input_shape: Tuple[int, int],
|
770 |
+
past_key_values_length: int,
|
771 |
+
) -> torch.BoolTensor:
|
772 |
+
# create causal mask
|
773 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
774 |
+
combined_attention_mask = None
|
775 |
+
device = attention_mask.device
|
776 |
+
_, src_length = input_shape
|
777 |
+
|
778 |
+
if src_length > 1:
|
779 |
+
combined_attention_mask = _make_causal_mask(
|
780 |
+
input_shape,
|
781 |
+
device=device,
|
782 |
+
past_key_values_length=past_key_values_length,
|
783 |
+
)
|
784 |
+
|
785 |
+
# [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length]
|
786 |
+
expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length)
|
787 |
+
combined_attention_mask = (
|
788 |
+
expanded_attn_mask
|
789 |
+
if combined_attention_mask is None
|
790 |
+
else expanded_attn_mask | combined_attention_mask
|
791 |
+
)
|
792 |
+
|
793 |
+
return combined_attention_mask
|
794 |
+
|
795 |
+
def get_slopes(self, n):
|
796 |
+
def get_slopes_power_of_2(n):
|
797 |
+
start = 2 ** (-(2 ** -(math.log2(n) - 3)))
|
798 |
+
ratio = start
|
799 |
+
return [start * ratio**i for i in range(n)]
|
800 |
+
|
801 |
+
if math.log2(n).is_integer():
|
802 |
+
return get_slopes_power_of_2(
|
803 |
+
n
|
804 |
+
) # In the paper, we only train models that have 2^a heads for some a. This function has
|
805 |
+
else: # some good properties that only occur when the input is a power of 2. To maintain that even
|
806 |
+
closest_power_of_2 = 2 ** math.floor(
|
807 |
+
math.log2(n)
|
808 |
+
) # when the number of heads is not a power of 2, we use this workaround.
|
809 |
+
return (
|
810 |
+
get_slopes_power_of_2(closest_power_of_2)
|
811 |
+
+ self.get_slopes(2 * closest_power_of_2)[0::2][
|
812 |
+
: n - closest_power_of_2
|
813 |
+
]
|
814 |
+
)
|
815 |
+
|
816 |
+
def forward(
|
817 |
+
self,
|
818 |
+
input_ids=None,
|
819 |
+
attention_mask=None,
|
820 |
+
encoder_hidden_states=None,
|
821 |
+
encoder_attention_mask=None,
|
822 |
+
inputs_embeds=None,
|
823 |
+
head_mask=None,
|
824 |
+
cross_attn_head_mask=None,
|
825 |
+
past_key_values=None,
|
826 |
+
use_cache=None,
|
827 |
+
output_attentions=None,
|
828 |
+
output_hidden_states=None,
|
829 |
+
position_ids=None,
|
830 |
+
return_dict=None,
|
831 |
+
):
|
832 |
+
# Model parallel
|
833 |
+
if self.model_parallel:
|
834 |
+
torch.cuda.set_device(self.first_device)
|
835 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
836 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
837 |
+
output_attentions = (
|
838 |
+
output_attentions
|
839 |
+
if output_attentions is not None
|
840 |
+
else self.config.output_attentions
|
841 |
+
)
|
842 |
+
output_hidden_states = (
|
843 |
+
output_hidden_states
|
844 |
+
if output_hidden_states is not None
|
845 |
+
else self.config.output_hidden_states
|
846 |
+
)
|
847 |
+
return_dict = (
|
848 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
849 |
+
)
|
850 |
+
|
851 |
+
if input_ids is not None and inputs_embeds is not None:
|
852 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
853 |
+
raise ValueError(
|
854 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
855 |
+
)
|
856 |
+
elif input_ids is not None:
|
857 |
+
input_shape = input_ids.size()
|
858 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
859 |
+
elif inputs_embeds is not None:
|
860 |
+
input_shape = inputs_embeds.size()[:-1]
|
861 |
+
else:
|
862 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
863 |
+
raise ValueError(
|
864 |
+
f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds"
|
865 |
+
)
|
866 |
+
|
867 |
+
if inputs_embeds is None:
|
868 |
+
assert (
|
869 |
+
self.embed_tokens is not None
|
870 |
+
), "You have to initialize the model with valid token embeddings"
|
871 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
872 |
+
|
873 |
+
if self.position_encoding_type in [
|
874 |
+
POSITION_ENCODING_ABS_LEARNED,
|
875 |
+
POSITION_ENCODING_ABS_SINUSOID,
|
876 |
+
]:
|
877 |
+
if position_ids is not None:
|
878 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
879 |
+
|
880 |
+
if past_key_values is None:
|
881 |
+
past_length = 0
|
882 |
+
else:
|
883 |
+
past_length = past_key_values[0][0].size(-2)
|
884 |
+
|
885 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
886 |
+
if position_ids is None:
|
887 |
+
position_ids = torch.arange(
|
888 |
+
past_length,
|
889 |
+
input_shape[-1] + past_length,
|
890 |
+
dtype=torch.long,
|
891 |
+
device=device,
|
892 |
+
)
|
893 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
894 |
+
|
895 |
+
position_embeds = self.wpe(position_ids)
|
896 |
+
inputs_embeds += position_embeds
|
897 |
+
|
898 |
+
batch_size, seq_length = input_shape
|
899 |
+
|
900 |
+
# `position_bias` is a just tensor that is passed to all attention layers
|
901 |
+
position_bias = None
|
902 |
+
|
903 |
+
# required mask seq length can be calculated via length of past
|
904 |
+
mask_seq_length = (
|
905 |
+
past_key_values[0][0].shape[2] + seq_length
|
906 |
+
if past_key_values is not None
|
907 |
+
else seq_length
|
908 |
+
)
|
909 |
+
|
910 |
+
if use_cache is True:
|
911 |
+
assert (
|
912 |
+
self.is_decoder
|
913 |
+
), f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
914 |
+
|
915 |
+
if attention_mask is None:
|
916 |
+
attention_mask = torch.ones(batch_size, mask_seq_length).to(
|
917 |
+
inputs_embeds.device
|
918 |
+
)
|
919 |
+
if (
|
920 |
+
self.is_decoder
|
921 |
+
and encoder_attention_mask is None
|
922 |
+
and encoder_hidden_states is not None
|
923 |
+
):
|
924 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
925 |
+
encoder_attention_mask = torch.ones(
|
926 |
+
batch_size,
|
927 |
+
encoder_seq_length,
|
928 |
+
device=inputs_embeds.device,
|
929 |
+
dtype=torch.long,
|
930 |
+
)
|
931 |
+
|
932 |
+
if self.position_encoding_type == POSITION_ENCODING_ROTARY_NEW:
|
933 |
+
if position_ids is not None:
|
934 |
+
position_ids = position_ids.view(-1, input_shape[-1])
|
935 |
+
|
936 |
+
if past_key_values is None:
|
937 |
+
past_length = 0
|
938 |
+
else:
|
939 |
+
past_length = past_key_values[0][0].size(-2)
|
940 |
+
|
941 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
942 |
+
if position_ids is None:
|
943 |
+
position_ids = torch.arange(
|
944 |
+
past_length,
|
945 |
+
input_shape[-1] + past_length,
|
946 |
+
dtype=torch.long,
|
947 |
+
device=device,
|
948 |
+
)
|
949 |
+
position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
|
950 |
+
|
951 |
+
sinusoidal_pos = self.fixed_rotary_embedding(position_ids)
|
952 |
+
position_bias = sinusoidal_pos
|
953 |
+
|
954 |
+
# initialize past_key_values with `None` if past does not exist
|
955 |
+
if past_key_values is None:
|
956 |
+
past_key_values = [None] * len(self.block)
|
957 |
+
|
958 |
+
if self.position_encoding_type == POSITION_ENCODING_NONE_WINDOW:
|
959 |
+
indices = torch.arange(seq_length, device=inputs_embeds.device)
|
960 |
+
causal_mask = indices[:, None] >= indices
|
961 |
+
window_mask = (
|
962 |
+
(indices.unsqueeze(0) - indices.unsqueeze(0).T)
|
963 |
+
.abs()
|
964 |
+
.less(self.window_size)
|
965 |
+
)
|
966 |
+
causal_mask = causal_mask & window_mask
|
967 |
+
attention_mask = causal_mask.int()
|
968 |
+
|
969 |
+
# Repeat the mask for each sample in the batch
|
970 |
+
attention_mask = attention_mask[None, :, :].expand(
|
971 |
+
batch_size, seq_length, seq_length
|
972 |
+
)
|
973 |
+
|
974 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
975 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
976 |
+
extended_attention_mask = self.get_extended_attention_mask(
|
977 |
+
attention_mask, input_shape, inputs_embeds.device
|
978 |
+
)
|
979 |
+
|
980 |
+
if self.position_encoding_type == POSITION_ENCODING_ALiBi:
|
981 |
+
num_heads = self.config.num_heads
|
982 |
+
if len(attention_mask.shape) == 3:
|
983 |
+
# We need to make a default attention mask
|
984 |
+
alibi_attention_mask = torch.ones(batch_size, mask_seq_length).to(
|
985 |
+
inputs_embeds.device
|
986 |
+
)
|
987 |
+
else:
|
988 |
+
alibi_attention_mask = attention_mask
|
989 |
+
|
990 |
+
alibi = build_alibi_tensor(
|
991 |
+
alibi_attention_mask, num_heads, dtype=inputs_embeds.dtype
|
992 |
+
)
|
993 |
+
position_bias = alibi
|
994 |
+
del alibi_attention_mask
|
995 |
+
|
996 |
+
if self.position_encoding_type in [POSITION_ENCODING_ALiBi_LEARNED]:
|
997 |
+
if not hasattr(self, "alibi"):
|
998 |
+
maxpos = 2048
|
999 |
+
attn_heads = self.config.num_heads
|
1000 |
+
slopes = self.learned_logslopes.exp()
|
1001 |
+
alibi = slopes.unsqueeze(1).unsqueeze(1) * torch.arange(
|
1002 |
+
maxpos, device=slopes.device
|
1003 |
+
).unsqueeze(0).unsqueeze(0).expand(attn_heads, -1, -1)
|
1004 |
+
alibi = alibi.view(attn_heads, 1, maxpos)
|
1005 |
+
else:
|
1006 |
+
alibi = self.alibi
|
1007 |
+
|
1008 |
+
alibi = alibi.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
1009 |
+
alibi = alibi[:, :, :, : attention_mask.shape[-1]]
|
1010 |
+
alibi = alibi.repeat(1, 1, extended_attention_mask.shape[2], 1)
|
1011 |
+
extended_attention_mask = torch.where(
|
1012 |
+
extended_attention_mask == 0,
|
1013 |
+
alibi,
|
1014 |
+
extended_attention_mask.repeat(1, self.config.num_heads, 1, 1),
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1018 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1019 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1020 |
+
(
|
1021 |
+
encoder_batch_size,
|
1022 |
+
encoder_sequence_length,
|
1023 |
+
_,
|
1024 |
+
) = encoder_hidden_states.size()
|
1025 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
1026 |
+
if encoder_attention_mask is None:
|
1027 |
+
encoder_attention_mask = torch.ones(
|
1028 |
+
encoder_hidden_shape, device=inputs_embeds.device
|
1029 |
+
)
|
1030 |
+
encoder_extended_attention_mask = self.invert_attention_mask(
|
1031 |
+
encoder_attention_mask
|
1032 |
+
)
|
1033 |
+
else:
|
1034 |
+
encoder_extended_attention_mask = None
|
1035 |
+
|
1036 |
+
# Prepare head mask if needed
|
1037 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
1038 |
+
cross_attn_head_mask = self.get_head_mask(
|
1039 |
+
cross_attn_head_mask, self.config.num_layers
|
1040 |
+
)
|
1041 |
+
present_key_value_states = () if use_cache else None
|
1042 |
+
all_hidden_states = () if output_hidden_states else None
|
1043 |
+
all_attentions = () if output_attentions else None
|
1044 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
1045 |
+
# position_bias = None
|
1046 |
+
encoder_decoder_position_bias = None
|
1047 |
+
|
1048 |
+
hidden_states = self.dropout(inputs_embeds)
|
1049 |
+
|
1050 |
+
for i, (layer_module, past_key_value) in enumerate(
|
1051 |
+
zip(self.block, past_key_values)
|
1052 |
+
):
|
1053 |
+
layer_head_mask = head_mask[i]
|
1054 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
1055 |
+
# Model parallel
|
1056 |
+
if self.model_parallel:
|
1057 |
+
torch.cuda.set_device(hidden_states.device)
|
1058 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
1059 |
+
if attention_mask is not None:
|
1060 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
1061 |
+
if position_bias is not None:
|
1062 |
+
position_bias = position_bias.to(hidden_states.device)
|
1063 |
+
if encoder_hidden_states is not None:
|
1064 |
+
encoder_hidden_states = encoder_hidden_states.to(
|
1065 |
+
hidden_states.device
|
1066 |
+
)
|
1067 |
+
if encoder_extended_attention_mask is not None:
|
1068 |
+
encoder_extended_attention_mask = (
|
1069 |
+
encoder_extended_attention_mask.to(hidden_states.device)
|
1070 |
+
)
|
1071 |
+
if encoder_decoder_position_bias is not None:
|
1072 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(
|
1073 |
+
hidden_states.device
|
1074 |
+
)
|
1075 |
+
if layer_head_mask is not None:
|
1076 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
1077 |
+
if cross_attn_layer_head_mask is not None:
|
1078 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(
|
1079 |
+
hidden_states.device
|
1080 |
+
)
|
1081 |
+
if output_hidden_states:
|
1082 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1083 |
+
|
1084 |
+
if self.gradient_checkpointing and self.training:
|
1085 |
+
if use_cache:
|
1086 |
+
logger.warn(
|
1087 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1088 |
+
)
|
1089 |
+
use_cache = False
|
1090 |
+
|
1091 |
+
def create_custom_forward(module):
|
1092 |
+
def custom_forward(*inputs):
|
1093 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
1094 |
+
|
1095 |
+
return custom_forward
|
1096 |
+
|
1097 |
+
layer_outputs = checkpoint(
|
1098 |
+
create_custom_forward(layer_module),
|
1099 |
+
hidden_states,
|
1100 |
+
extended_attention_mask,
|
1101 |
+
position_bias,
|
1102 |
+
encoder_hidden_states,
|
1103 |
+
encoder_extended_attention_mask,
|
1104 |
+
encoder_decoder_position_bias,
|
1105 |
+
layer_head_mask,
|
1106 |
+
cross_attn_layer_head_mask,
|
1107 |
+
None, # past_key_value is always None with gradient checkpointing
|
1108 |
+
)
|
1109 |
+
else:
|
1110 |
+
layer_outputs = layer_module(
|
1111 |
+
hidden_states,
|
1112 |
+
attention_mask=extended_attention_mask,
|
1113 |
+
position_bias=position_bias,
|
1114 |
+
encoder_hidden_states=encoder_hidden_states,
|
1115 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1116 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1117 |
+
layer_head_mask=layer_head_mask,
|
1118 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1119 |
+
past_key_value=past_key_value,
|
1120 |
+
use_cache=use_cache,
|
1121 |
+
output_attentions=output_attentions,
|
1122 |
+
)
|
1123 |
+
|
1124 |
+
# layer_outputs is a tuple with:
|
1125 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1126 |
+
if use_cache is False:
|
1127 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1128 |
+
|
1129 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1130 |
+
|
1131 |
+
# We share the position biases between the layers - the first layer store them
|
1132 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1133 |
+
# (cross-attention position bias), (cross-attention weights)
|
1134 |
+
position_bias = layer_outputs[2]
|
1135 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1136 |
+
encoder_decoder_position_bias = layer_outputs[
|
1137 |
+
4 if output_attentions else 3
|
1138 |
+
]
|
1139 |
+
# append next layer key value states
|
1140 |
+
if use_cache:
|
1141 |
+
present_key_value_states = present_key_value_states + (
|
1142 |
+
present_key_value_state,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
if output_attentions:
|
1146 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1147 |
+
if self.is_decoder:
|
1148 |
+
all_cross_attentions = all_cross_attentions + (None,)
|
1149 |
+
|
1150 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1151 |
+
if self.model_parallel:
|
1152 |
+
for k, v in self.device_map.items():
|
1153 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1154 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1155 |
+
|
1156 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1157 |
+
hidden_states = self.dropout(hidden_states)
|
1158 |
+
|
1159 |
+
# Add last layer
|
1160 |
+
if output_hidden_states:
|
1161 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1162 |
+
|
1163 |
+
if not return_dict:
|
1164 |
+
return tuple(
|
1165 |
+
v
|
1166 |
+
for v in [
|
1167 |
+
hidden_states,
|
1168 |
+
present_key_value_states,
|
1169 |
+
all_hidden_states,
|
1170 |
+
all_attentions,
|
1171 |
+
all_cross_attentions,
|
1172 |
+
]
|
1173 |
+
if v is not None
|
1174 |
+
)
|
1175 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1176 |
+
last_hidden_state=hidden_states,
|
1177 |
+
past_key_values=present_key_value_states,
|
1178 |
+
hidden_states=all_hidden_states,
|
1179 |
+
attentions=all_attentions,
|
1180 |
+
cross_attentions=all_cross_attentions,
|
1181 |
+
)
|
1182 |
+
|
1183 |
+
|
1184 |
+
class CustomDecoderOnlyT5(T5PreTrainedModel):
|
1185 |
+
config_class = CustomT5Config
|
1186 |
+
_keys_to_ignore_on_load_missing = [
|
1187 |
+
r"decoder\.embed_tokens\.weight",
|
1188 |
+
r"encoder",
|
1189 |
+
r"lm_head\.weight",
|
1190 |
+
]
|
1191 |
+
_keys_to_ignore_on_load_unexpected = [
|
1192 |
+
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
1193 |
+
]
|
1194 |
+
|
1195 |
+
def __init__(
|
1196 |
+
self,
|
1197 |
+
config=None,
|
1198 |
+
output_non_reduced_loss: bool = False,
|
1199 |
+
**kwargs,
|
1200 |
+
):
|
1201 |
+
assert config is not None
|
1202 |
+
config.is_decoder = True
|
1203 |
+
config.is_encoder_decoder = False
|
1204 |
+
|
1205 |
+
assert (
|
1206 |
+
config.position_encoding_type is not None
|
1207 |
+
), "Position encoding type must be set"
|
1208 |
+
|
1209 |
+
self.output_non_reduced_loss = output_non_reduced_loss
|
1210 |
+
self.main_input_name = "input_ids"
|
1211 |
+
|
1212 |
+
super().__init__(config)
|
1213 |
+
|
1214 |
+
self.model_dim = config.d_model
|
1215 |
+
|
1216 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1217 |
+
self.decoder = CustomT5Stack(config, self.shared)
|
1218 |
+
|
1219 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1220 |
+
|
1221 |
+
# Initialize weights and apply final processing
|
1222 |
+
self.post_init()
|
1223 |
+
|
1224 |
+
# Model parallel
|
1225 |
+
self.model_parallel = False
|
1226 |
+
self.device_map = None
|
1227 |
+
#
|
1228 |
+
cross_attention_params = [
|
1229 |
+
p
|
1230 |
+
for n, p in self.decoder.named_parameters()
|
1231 |
+
if n.startswith("block.") and ".layer.1." in n
|
1232 |
+
]
|
1233 |
+
for param in cross_attention_params:
|
1234 |
+
param.requires_grad = False
|
1235 |
+
|
1236 |
+
# self.handle_tokenizer(tokenizer)
|
1237 |
+
|
1238 |
+
def get_decoder(self):
|
1239 |
+
return self.decoder
|
1240 |
+
|
1241 |
+
def parallelize(self, device_map=None):
|
1242 |
+
self.device_map = (
|
1243 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1244 |
+
if device_map is None
|
1245 |
+
else device_map
|
1246 |
+
)
|
1247 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1248 |
+
self.encoder.parallelize(self.device_map)
|
1249 |
+
self.decoder.parallelize(self.device_map)
|
1250 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1251 |
+
self.model_parallel = True
|
1252 |
+
|
1253 |
+
def deparallelize(self):
|
1254 |
+
self.encoder.deparallelize()
|
1255 |
+
self.decoder.deparallelize()
|
1256 |
+
self.encoder = self.encoder.to("cpu")
|
1257 |
+
self.decoder = self.decoder.to("cpu")
|
1258 |
+
self.lm_head = self.lm_head.to("cpu")
|
1259 |
+
self.model_parallel = False
|
1260 |
+
self.device_map = None
|
1261 |
+
torch.cuda.empty_cache()
|
1262 |
+
|
1263 |
+
def get_input_embeddings(self):
|
1264 |
+
return self.shared
|
1265 |
+
|
1266 |
+
def set_input_embeddings(self, new_embeddings):
|
1267 |
+
self.shared = new_embeddings
|
1268 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1269 |
+
|
1270 |
+
def set_output_embeddings(self, new_embeddings):
|
1271 |
+
self.lm_head = new_embeddings
|
1272 |
+
|
1273 |
+
def get_output_embeddings(self):
|
1274 |
+
return self.lm_head
|
1275 |
+
|
1276 |
+
def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
|
1277 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1278 |
+
# only last token for inputs_ids if past is defined in kwargs
|
1279 |
+
if past:
|
1280 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
1281 |
+
if token_type_ids is not None:
|
1282 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
1283 |
+
|
1284 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1285 |
+
position_ids = kwargs.get("position_ids", None)
|
1286 |
+
|
1287 |
+
if attention_mask is not None and position_ids is None:
|
1288 |
+
# create position_ids on the fly for batch generation
|
1289 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1290 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1291 |
+
if past:
|
1292 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1293 |
+
else:
|
1294 |
+
position_ids = None
|
1295 |
+
|
1296 |
+
return {
|
1297 |
+
"input_ids": input_ids,
|
1298 |
+
"past_key_values": past,
|
1299 |
+
"use_cache": kwargs.get("use_cache"),
|
1300 |
+
"attention_mask": attention_mask,
|
1301 |
+
"token_type_ids": token_type_ids,
|
1302 |
+
"position_ids": position_ids,
|
1303 |
+
}
|
1304 |
+
|
1305 |
+
def forward(
|
1306 |
+
self,
|
1307 |
+
input_ids=None,
|
1308 |
+
past_key_values=None,
|
1309 |
+
attention_mask=None,
|
1310 |
+
token_type_ids=None,
|
1311 |
+
position_ids=None,
|
1312 |
+
head_mask=None,
|
1313 |
+
inputs_embeds=None,
|
1314 |
+
labels=None,
|
1315 |
+
use_cache=None,
|
1316 |
+
output_attentions=None,
|
1317 |
+
output_hidden_states=None,
|
1318 |
+
return_dict=None,
|
1319 |
+
):
|
1320 |
+
return_dict = (
|
1321 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1322 |
+
)
|
1323 |
+
|
1324 |
+
if self.model_parallel:
|
1325 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1326 |
+
|
1327 |
+
if self.model_parallel:
|
1328 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1329 |
+
if input_ids is not None:
|
1330 |
+
input_ids = input_ids.to(self.decoder.first_device)
|
1331 |
+
if attention_mask is not None:
|
1332 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1333 |
+
|
1334 |
+
transformer_outputs = self.decoder(
|
1335 |
+
input_ids=input_ids,
|
1336 |
+
attention_mask=attention_mask,
|
1337 |
+
inputs_embeds=inputs_embeds,
|
1338 |
+
past_key_values=past_key_values,
|
1339 |
+
position_ids=position_ids,
|
1340 |
+
encoder_hidden_states=None,
|
1341 |
+
encoder_attention_mask=None,
|
1342 |
+
head_mask=head_mask,
|
1343 |
+
cross_attn_head_mask=None,
|
1344 |
+
use_cache=use_cache,
|
1345 |
+
output_attentions=output_attentions,
|
1346 |
+
output_hidden_states=output_hidden_states,
|
1347 |
+
return_dict=return_dict,
|
1348 |
+
)
|
1349 |
+
hidden_states = transformer_outputs[0]
|
1350 |
+
|
1351 |
+
if self.config.tie_word_embeddings:
|
1352 |
+
# Rescale output before projecting on vocab
|
1353 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1354 |
+
hidden_states = hidden_states * (self.model_dim**-0.5)
|
1355 |
+
|
1356 |
+
lm_logits = self.lm_head(hidden_states)
|
1357 |
+
|
1358 |
+
loss = None
|
1359 |
+
non_reduced_loss = None
|
1360 |
+
if labels is not None:
|
1361 |
+
# Compute loss in fp32 to match with mesh-tf version
|
1362 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
1363 |
+
lm_logits = lm_logits.to(torch.float32)
|
1364 |
+
|
1365 |
+
# Shift so that tokens < n predict n
|
1366 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1367 |
+
shift_labels = labels[..., 1:].contiguous()
|
1368 |
+
# Flatten the tokens
|
1369 |
+
loss_fct = CrossEntropyLoss()
|
1370 |
+
loss = loss_fct(
|
1371 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1375 |
+
loss = loss.to(hidden_states.dtype)
|
1376 |
+
|
1377 |
+
if self.output_non_reduced_loss:
|
1378 |
+
loss_fct = CrossEntropyLoss(reduction="none")
|
1379 |
+
non_reduced_loss = loss_fct(
|
1380 |
+
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1)
|
1381 |
+
)
|
1382 |
+
|
1383 |
+
# Reshape to [batch_size, seq_length - 1]
|
1384 |
+
non_reduced_loss = non_reduced_loss.view(
|
1385 |
+
shift_labels.shape[0], shift_labels.shape[1]
|
1386 |
+
)[:, -1].view(-1, 1)
|
1387 |
+
|
1388 |
+
if not return_dict:
|
1389 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1390 |
+
return ((loss,) + output) if loss is not None else output
|
1391 |
+
|
1392 |
+
return CausalLMOutputWithPastAndLoss(
|
1393 |
+
loss=loss,
|
1394 |
+
logits=lm_logits,
|
1395 |
+
past_key_values=transformer_outputs.past_key_values,
|
1396 |
+
hidden_states=transformer_outputs.hidden_states,
|
1397 |
+
attentions=transformer_outputs.attentions,
|
1398 |
+
non_reduced_loss=non_reduced_loss,
|
1399 |
+
)
|
1400 |
+
|
1401 |
+
@staticmethod
|
1402 |
+
def _reorder_cache(
|
1403 |
+
past: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1404 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1405 |
+
"""
|
1406 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
1407 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1408 |
+
beam_idx at every generation step.
|
1409 |
+
"""
|
1410 |
+
return tuple(
|
1411 |
+
tuple(
|
1412 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1413 |
+
for past_state in layer_past
|
1414 |
+
)
|
1415 |
+
for layer_past in past
|
1416 |
+
)
|
modeling_t5.py
ADDED
@@ -0,0 +1,1821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch T5 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
import math
|
20 |
+
import os
|
21 |
+
|
22 |
+
import torch
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import CrossEntropyLoss
|
25 |
+
from torch.utils.checkpoint import checkpoint
|
26 |
+
from transformers import T5Config
|
27 |
+
from transformers.activations import ACT2FN
|
28 |
+
from transformers.file_utils import (
|
29 |
+
DUMMY_INPUTS,
|
30 |
+
DUMMY_MASK,
|
31 |
+
add_start_docstrings,
|
32 |
+
add_start_docstrings_to_model_forward,
|
33 |
+
is_torch_fx_proxy,
|
34 |
+
replace_return_docstrings,
|
35 |
+
)
|
36 |
+
from transformers.modeling_outputs import (
|
37 |
+
BaseModelOutput,
|
38 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
39 |
+
Seq2SeqLMOutput,
|
40 |
+
Seq2SeqModelOutput,
|
41 |
+
)
|
42 |
+
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
|
43 |
+
from transformers.utils import logging
|
44 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__)
|
47 |
+
|
48 |
+
_CONFIG_FOR_DOC = "T5Config"
|
49 |
+
_TOKENIZER_FOR_DOC = "T5Tokenizer"
|
50 |
+
_CHECKPOINT_FOR_DOC = "t5-small"
|
51 |
+
|
52 |
+
####################################################
|
53 |
+
# This dict contains ids and associated url
|
54 |
+
# for the pretrained weights provided with the models
|
55 |
+
####################################################
|
56 |
+
T5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
57 |
+
"t5-small",
|
58 |
+
"t5-base",
|
59 |
+
"t5-large",
|
60 |
+
"t5-3b",
|
61 |
+
"t5-11b",
|
62 |
+
# See all T5 models at https://huggingface.co/models?filter=t5
|
63 |
+
]
|
64 |
+
|
65 |
+
|
66 |
+
####################################################
|
67 |
+
# This is a conversion method from TF 1.0 to PyTorch
|
68 |
+
# More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28
|
69 |
+
####################################################
|
70 |
+
def load_tf_weights_in_t5(model, config, tf_checkpoint_path):
|
71 |
+
"""Load tf checkpoints in a pytorch model."""
|
72 |
+
try:
|
73 |
+
import re
|
74 |
+
|
75 |
+
import numpy as np
|
76 |
+
import tensorflow as tf
|
77 |
+
except ImportError:
|
78 |
+
logger.error(
|
79 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
80 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
81 |
+
)
|
82 |
+
raise
|
83 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
84 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
85 |
+
# Load weights from TF model
|
86 |
+
init_vars = tf.train.list_variables(tf_path)
|
87 |
+
names = []
|
88 |
+
tf_weights = {}
|
89 |
+
for name, shape in init_vars:
|
90 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
91 |
+
array = tf.train.load_variable(tf_path, name)
|
92 |
+
names.append(name)
|
93 |
+
tf_weights[name] = array
|
94 |
+
|
95 |
+
for txt_name in names:
|
96 |
+
name = txt_name.split("/")
|
97 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
98 |
+
# which are not required for using pretrained model
|
99 |
+
if any(
|
100 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
101 |
+
for n in name
|
102 |
+
):
|
103 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
104 |
+
tf_weights.pop(txt_name, None)
|
105 |
+
continue
|
106 |
+
if "_slot_" in name[-1]:
|
107 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
108 |
+
tf_weights.pop(txt_name, None)
|
109 |
+
continue
|
110 |
+
pointer = model
|
111 |
+
array = tf_weights[txt_name]
|
112 |
+
|
113 |
+
for m_name in name:
|
114 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
115 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
116 |
+
else:
|
117 |
+
scope_names = [m_name]
|
118 |
+
if scope_names[0] in ["kernel", "scale", "embedding"]:
|
119 |
+
pointer = getattr(pointer, "weight")
|
120 |
+
elif scope_names[0] == "self_attention":
|
121 |
+
pointer = getattr(pointer, "layer")
|
122 |
+
pointer = pointer[0]
|
123 |
+
elif scope_names[0] == "enc_dec_attention":
|
124 |
+
pointer = getattr(pointer, "layer")
|
125 |
+
pointer = pointer[1]
|
126 |
+
elif scope_names[0] == "dense_relu_dense":
|
127 |
+
pointer = getattr(pointer, "layer")
|
128 |
+
pointer = pointer[2]
|
129 |
+
elif scope_names[0] == "rms_norm":
|
130 |
+
if hasattr(pointer, "layer_norm"):
|
131 |
+
pointer = getattr(pointer, "layer_norm")
|
132 |
+
elif hasattr(pointer, "final_layer_norm"):
|
133 |
+
pointer = getattr(pointer, "final_layer_norm")
|
134 |
+
elif scope_names[0] == "scale":
|
135 |
+
pointer = getattr(pointer, "weight")
|
136 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
137 |
+
pointer = getattr(pointer, "bias")
|
138 |
+
elif scope_names[0] == "squad":
|
139 |
+
pointer = getattr(pointer, "classifier")
|
140 |
+
elif scope_names[0] == "decoder" and name[1] == "logits":
|
141 |
+
continue
|
142 |
+
elif scope_names[0] == "logits":
|
143 |
+
pointer = getattr(pointer, "lm_head")
|
144 |
+
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
|
145 |
+
pointer = getattr(pointer, f"wi_{scope_names[1]}")
|
146 |
+
continue
|
147 |
+
else:
|
148 |
+
try:
|
149 |
+
pointer = getattr(pointer, scope_names[0])
|
150 |
+
except AttributeError:
|
151 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
152 |
+
continue
|
153 |
+
if len(scope_names) >= 2:
|
154 |
+
num = int(scope_names[1])
|
155 |
+
pointer = pointer[num]
|
156 |
+
if scope_names[0] not in ["kernel", "scale", "embedding"]:
|
157 |
+
pointer = getattr(pointer, "weight")
|
158 |
+
if scope_names[0] != "embedding":
|
159 |
+
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
|
160 |
+
array = np.transpose(array)
|
161 |
+
try:
|
162 |
+
assert (
|
163 |
+
pointer.shape == array.shape
|
164 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
165 |
+
except AssertionError as e:
|
166 |
+
e.args += (pointer.shape, array.shape)
|
167 |
+
raise
|
168 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
169 |
+
pointer.data = torch.from_numpy(array.astype(np.float32))
|
170 |
+
tf_weights.pop(txt_name, None)
|
171 |
+
|
172 |
+
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
|
173 |
+
return model
|
174 |
+
|
175 |
+
|
176 |
+
####################################################
|
177 |
+
# PyTorch Models are constructed by sub-classing
|
178 |
+
# - torch.nn.Module for the layers and
|
179 |
+
# - PreTrainedModel for the models (it-self a sub-class of nn.Module)
|
180 |
+
####################################################
|
181 |
+
PARALLELIZE_DOCSTRING = r"""
|
182 |
+
This is an experimental feature and is a subject to change at a moment's notice.
|
183 |
+
|
184 |
+
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
|
185 |
+
it will evenly distribute blocks across all devices.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
189 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
190 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
191 |
+
have fewer attention modules mapped to it than other devices. For reference, the t5 models have the
|
192 |
+
following number of attention modules:
|
193 |
+
|
194 |
+
- t5-small: 6
|
195 |
+
- t5-base: 12
|
196 |
+
- t5-large: 24
|
197 |
+
- t5-3b: 24
|
198 |
+
- t5-11b: 24
|
199 |
+
|
200 |
+
Example:
|
201 |
+
|
202 |
+
```python
|
203 |
+
# Here is an example of a device map on a machine with 4 GPUs using t5-3b, which has a total of 24 attention modules:
|
204 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
205 |
+
device_map = {
|
206 |
+
0: [0, 1, 2],
|
207 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
208 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
209 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
210 |
+
}
|
211 |
+
model.parallelize(device_map)
|
212 |
+
```
|
213 |
+
"""
|
214 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
215 |
+
Moves the model to cpu from a model parallel state.
|
216 |
+
|
217 |
+
Example:
|
218 |
+
|
219 |
+
```python
|
220 |
+
# On a 4 GPU machine with t5-3b:
|
221 |
+
model = T5ForConditionalGeneration.from_pretrained("t5-3b")
|
222 |
+
device_map = {
|
223 |
+
0: [0, 1, 2],
|
224 |
+
1: [3, 4, 5, 6, 7, 8, 9],
|
225 |
+
2: [10, 11, 12, 13, 14, 15, 16],
|
226 |
+
3: [17, 18, 19, 20, 21, 22, 23],
|
227 |
+
}
|
228 |
+
model.parallelize(device_map) # Splits the model across several devices
|
229 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
230 |
+
```
|
231 |
+
"""
|
232 |
+
|
233 |
+
|
234 |
+
class T5LayerNorm(nn.Module):
|
235 |
+
def __init__(self, hidden_size, eps=1e-6):
|
236 |
+
"""
|
237 |
+
Construct a layernorm module in the T5 style No bias and no subtraction of mean.
|
238 |
+
"""
|
239 |
+
super().__init__()
|
240 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
241 |
+
self.variance_epsilon = eps
|
242 |
+
|
243 |
+
def forward(self, hidden_states):
|
244 |
+
# layer norm should always be calculated in float32
|
245 |
+
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
|
246 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
247 |
+
|
248 |
+
# convert into half-precision if necessary
|
249 |
+
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
250 |
+
hidden_states = hidden_states.to(self.weight.dtype)
|
251 |
+
|
252 |
+
return self.weight * hidden_states
|
253 |
+
|
254 |
+
|
255 |
+
class T5DenseReluDense(nn.Module):
|
256 |
+
def __init__(self, config):
|
257 |
+
super().__init__()
|
258 |
+
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
|
259 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
260 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
261 |
+
|
262 |
+
def forward(self, hidden_states):
|
263 |
+
hidden_states = self.wi(hidden_states)
|
264 |
+
hidden_states = nn.functional.relu(hidden_states)
|
265 |
+
hidden_states = self.dropout(hidden_states)
|
266 |
+
hidden_states = self.wo(hidden_states)
|
267 |
+
return hidden_states
|
268 |
+
|
269 |
+
|
270 |
+
class T5DenseGatedGeluDense(nn.Module):
|
271 |
+
def __init__(self, config):
|
272 |
+
super().__init__()
|
273 |
+
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
274 |
+
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
|
275 |
+
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
|
276 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
277 |
+
self.gelu_act = ACT2FN["gelu_new"]
|
278 |
+
|
279 |
+
def forward(self, hidden_states):
|
280 |
+
hidden_gelu = self.gelu_act(self.wi_0(hidden_states))
|
281 |
+
hidden_linear = self.wi_1(hidden_states)
|
282 |
+
hidden_states = hidden_gelu * hidden_linear
|
283 |
+
hidden_states = self.dropout(hidden_states)
|
284 |
+
hidden_states = self.wo(hidden_states)
|
285 |
+
return hidden_states
|
286 |
+
|
287 |
+
|
288 |
+
class T5LayerFF(nn.Module):
|
289 |
+
def __init__(self, config):
|
290 |
+
super().__init__()
|
291 |
+
if config.feed_forward_proj == "relu":
|
292 |
+
self.DenseReluDense = T5DenseReluDense(config)
|
293 |
+
elif config.feed_forward_proj == "gated-gelu":
|
294 |
+
self.DenseReluDense = T5DenseGatedGeluDense(config)
|
295 |
+
else:
|
296 |
+
raise ValueError(
|
297 |
+
f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`"
|
298 |
+
)
|
299 |
+
|
300 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
301 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
302 |
+
|
303 |
+
def forward(self, hidden_states):
|
304 |
+
forwarded_states = self.layer_norm(hidden_states)
|
305 |
+
forwarded_states = self.DenseReluDense(forwarded_states)
|
306 |
+
hidden_states = hidden_states + self.dropout(forwarded_states)
|
307 |
+
return hidden_states
|
308 |
+
|
309 |
+
|
310 |
+
class T5Attention(nn.Module):
|
311 |
+
def __init__(self, config: T5Config, has_relative_attention_bias=False):
|
312 |
+
super().__init__()
|
313 |
+
self.is_decoder = config.is_decoder
|
314 |
+
self.has_relative_attention_bias = has_relative_attention_bias
|
315 |
+
|
316 |
+
self.relative_attention_num_buckets = config.relative_attention_num_buckets
|
317 |
+
self.d_model = config.d_model
|
318 |
+
self.key_value_proj_dim = config.d_kv
|
319 |
+
self.n_heads = config.num_heads
|
320 |
+
self.dropout = config.dropout_rate
|
321 |
+
self.inner_dim = self.n_heads * self.key_value_proj_dim
|
322 |
+
|
323 |
+
# Mesh TensorFlow initialization to avoid scaling before softmax
|
324 |
+
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
325 |
+
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
326 |
+
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
|
327 |
+
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
|
328 |
+
|
329 |
+
if self.has_relative_attention_bias:
|
330 |
+
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
|
331 |
+
self.pruned_heads = set()
|
332 |
+
self.gradient_checkpointing = False
|
333 |
+
|
334 |
+
def prune_heads(self, heads):
|
335 |
+
if len(heads) == 0:
|
336 |
+
return
|
337 |
+
heads, index = find_pruneable_heads_and_indices(
|
338 |
+
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
|
339 |
+
)
|
340 |
+
# Prune linear layers
|
341 |
+
self.q = prune_linear_layer(self.q, index)
|
342 |
+
self.k = prune_linear_layer(self.k, index)
|
343 |
+
self.v = prune_linear_layer(self.v, index)
|
344 |
+
self.o = prune_linear_layer(self.o, index, dim=1)
|
345 |
+
# Update hyper params
|
346 |
+
self.n_heads = self.n_heads - len(heads)
|
347 |
+
self.inner_dim = self.key_value_proj_dim * self.n_heads
|
348 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
349 |
+
|
350 |
+
@staticmethod
|
351 |
+
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
|
352 |
+
"""
|
353 |
+
Adapted from Mesh Tensorflow:
|
354 |
+
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
|
355 |
+
|
356 |
+
Translate relative position to a bucket number for relative attention. The relative position is defined as
|
357 |
+
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
|
358 |
+
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
|
359 |
+
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
|
360 |
+
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
|
361 |
+
This should allow for more graceful generalization to longer sequences than the model has been trained on
|
362 |
+
|
363 |
+
Args:
|
364 |
+
relative_position: an int32 Tensor
|
365 |
+
bidirectional: a boolean - whether the attention is bidirectional
|
366 |
+
num_buckets: an integer
|
367 |
+
max_distance: an integer
|
368 |
+
|
369 |
+
Returns:
|
370 |
+
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
|
371 |
+
"""
|
372 |
+
relative_buckets = 0
|
373 |
+
if bidirectional:
|
374 |
+
num_buckets //= 2
|
375 |
+
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
|
376 |
+
relative_position = torch.abs(relative_position)
|
377 |
+
else:
|
378 |
+
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
|
379 |
+
# now relative_position is in the range [0, inf)
|
380 |
+
|
381 |
+
# half of the buckets are for exact increments in positions
|
382 |
+
max_exact = num_buckets // 2
|
383 |
+
is_small = relative_position < max_exact
|
384 |
+
|
385 |
+
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
|
386 |
+
relative_postion_if_large = max_exact + (
|
387 |
+
torch.log(relative_position.float() / max_exact)
|
388 |
+
/ math.log(max_distance / max_exact)
|
389 |
+
* (num_buckets - max_exact)
|
390 |
+
).to(torch.long)
|
391 |
+
relative_postion_if_large = torch.min(
|
392 |
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
393 |
+
)
|
394 |
+
|
395 |
+
relative_buckets += torch.where(is_small, relative_position, relative_postion_if_large)
|
396 |
+
return relative_buckets
|
397 |
+
|
398 |
+
def compute_bias(self, query_length, key_length):
|
399 |
+
"""Compute binned relative position bias"""
|
400 |
+
context_position = torch.arange(
|
401 |
+
query_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
|
402 |
+
)[:, None]
|
403 |
+
memory_position = torch.arange(
|
404 |
+
key_length, dtype=torch.long, device=self.relative_attention_bias.weight.device
|
405 |
+
)[None, :]
|
406 |
+
relative_position = memory_position - context_position # shape (query_length, key_length)
|
407 |
+
relative_position_bucket = self._relative_position_bucket(
|
408 |
+
relative_position, # shape (query_length, key_length)
|
409 |
+
bidirectional=(not self.is_decoder),
|
410 |
+
num_buckets=self.relative_attention_num_buckets,
|
411 |
+
)
|
412 |
+
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
|
413 |
+
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
|
414 |
+
return values
|
415 |
+
|
416 |
+
def forward(
|
417 |
+
self,
|
418 |
+
hidden_states,
|
419 |
+
mask=None,
|
420 |
+
key_value_states=None,
|
421 |
+
position_bias=None,
|
422 |
+
past_key_value=None,
|
423 |
+
layer_head_mask=None,
|
424 |
+
query_length=None,
|
425 |
+
use_cache=False,
|
426 |
+
output_attentions=False,
|
427 |
+
):
|
428 |
+
"""
|
429 |
+
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
|
430 |
+
"""
|
431 |
+
# Input is (batch_size, seq_length, dim)
|
432 |
+
# Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
|
433 |
+
# past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
|
434 |
+
batch_size, seq_length = hidden_states.shape[:2]
|
435 |
+
|
436 |
+
real_seq_length = seq_length
|
437 |
+
|
438 |
+
if past_key_value is not None:
|
439 |
+
assert (
|
440 |
+
len(past_key_value) == 2
|
441 |
+
), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
|
442 |
+
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length
|
443 |
+
|
444 |
+
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]
|
445 |
+
|
446 |
+
def shape(states):
|
447 |
+
"""projection"""
|
448 |
+
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
|
449 |
+
|
450 |
+
def unshape(states):
|
451 |
+
"""reshape"""
|
452 |
+
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)
|
453 |
+
|
454 |
+
def project(hidden_states, proj_layer, key_value_states, past_key_value):
|
455 |
+
"""projects hidden states correctly to key/query states"""
|
456 |
+
if key_value_states is None:
|
457 |
+
# self-attn
|
458 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
459 |
+
hidden_states = shape(proj_layer(hidden_states))
|
460 |
+
elif past_key_value is None:
|
461 |
+
# cross-attn
|
462 |
+
# (batch_size, n_heads, seq_length, dim_per_head)
|
463 |
+
hidden_states = shape(proj_layer(key_value_states))
|
464 |
+
|
465 |
+
if past_key_value is not None:
|
466 |
+
if key_value_states is None:
|
467 |
+
# self-attn
|
468 |
+
# (batch_size, n_heads, key_length, dim_per_head)
|
469 |
+
hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
|
470 |
+
else:
|
471 |
+
# cross-attn
|
472 |
+
hidden_states = past_key_value
|
473 |
+
return hidden_states
|
474 |
+
|
475 |
+
# get query states
|
476 |
+
query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head)
|
477 |
+
|
478 |
+
# get key/value states
|
479 |
+
key_states = project(
|
480 |
+
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
|
481 |
+
)
|
482 |
+
value_states = project(
|
483 |
+
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
|
484 |
+
)
|
485 |
+
|
486 |
+
# compute scores
|
487 |
+
scores = torch.matmul(
|
488 |
+
query_states, key_states.transpose(3, 2)
|
489 |
+
) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
|
490 |
+
|
491 |
+
if position_bias is None:
|
492 |
+
if not self.has_relative_attention_bias:
|
493 |
+
position_bias = torch.zeros(
|
494 |
+
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
|
495 |
+
)
|
496 |
+
if self.gradient_checkpointing and self.training:
|
497 |
+
position_bias.requires_grad = True
|
498 |
+
else:
|
499 |
+
position_bias = self.compute_bias(real_seq_length, key_length)
|
500 |
+
|
501 |
+
# if key and values are already calculated
|
502 |
+
# we want only the last query position bias
|
503 |
+
if past_key_value is not None:
|
504 |
+
position_bias = position_bias[:, :, -hidden_states.size(1) :, :]
|
505 |
+
|
506 |
+
if mask is not None:
|
507 |
+
position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length)
|
508 |
+
|
509 |
+
scores += position_bias
|
510 |
+
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
|
511 |
+
scores
|
512 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
513 |
+
attn_weights = nn.functional.dropout(
|
514 |
+
attn_weights, p=self.dropout, training=self.training
|
515 |
+
) # (batch_size, n_heads, seq_length, key_length)
|
516 |
+
|
517 |
+
# Mask heads if we want to
|
518 |
+
if layer_head_mask is not None:
|
519 |
+
attn_weights = attn_weights * layer_head_mask
|
520 |
+
|
521 |
+
attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim)
|
522 |
+
attn_output = self.o(attn_output)
|
523 |
+
|
524 |
+
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
|
525 |
+
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
|
526 |
+
|
527 |
+
if output_attentions:
|
528 |
+
outputs = outputs + (attn_weights,)
|
529 |
+
return outputs
|
530 |
+
|
531 |
+
|
532 |
+
class T5LayerSelfAttention(nn.Module):
|
533 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
534 |
+
super().__init__()
|
535 |
+
self.SelfAttention = T5Attention(config, has_relative_attention_bias=has_relative_attention_bias)
|
536 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
537 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
538 |
+
|
539 |
+
def forward(
|
540 |
+
self,
|
541 |
+
hidden_states,
|
542 |
+
attention_mask=None,
|
543 |
+
position_bias=None,
|
544 |
+
layer_head_mask=None,
|
545 |
+
past_key_value=None,
|
546 |
+
use_cache=False,
|
547 |
+
output_attentions=False,
|
548 |
+
):
|
549 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
550 |
+
attention_output = self.SelfAttention(
|
551 |
+
normed_hidden_states,
|
552 |
+
mask=attention_mask,
|
553 |
+
position_bias=position_bias,
|
554 |
+
layer_head_mask=layer_head_mask,
|
555 |
+
past_key_value=past_key_value,
|
556 |
+
use_cache=use_cache,
|
557 |
+
output_attentions=output_attentions,
|
558 |
+
)
|
559 |
+
hidden_states = hidden_states + self.dropout(attention_output[0])
|
560 |
+
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
|
561 |
+
return outputs
|
562 |
+
|
563 |
+
|
564 |
+
class T5LayerCrossAttention(nn.Module):
|
565 |
+
def __init__(self, config):
|
566 |
+
super().__init__()
|
567 |
+
self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False)
|
568 |
+
self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
569 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
570 |
+
|
571 |
+
def forward(
|
572 |
+
self,
|
573 |
+
hidden_states,
|
574 |
+
key_value_states,
|
575 |
+
attention_mask=None,
|
576 |
+
position_bias=None,
|
577 |
+
layer_head_mask=None,
|
578 |
+
past_key_value=None,
|
579 |
+
use_cache=False,
|
580 |
+
query_length=None,
|
581 |
+
output_attentions=False,
|
582 |
+
):
|
583 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
584 |
+
attention_output = self.EncDecAttention(
|
585 |
+
normed_hidden_states,
|
586 |
+
mask=attention_mask,
|
587 |
+
key_value_states=key_value_states,
|
588 |
+
position_bias=position_bias,
|
589 |
+
layer_head_mask=layer_head_mask,
|
590 |
+
past_key_value=past_key_value,
|
591 |
+
use_cache=use_cache,
|
592 |
+
query_length=query_length,
|
593 |
+
output_attentions=output_attentions,
|
594 |
+
)
|
595 |
+
layer_output = hidden_states + self.dropout(attention_output[0])
|
596 |
+
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
|
597 |
+
return outputs
|
598 |
+
|
599 |
+
|
600 |
+
class T5Block(nn.Module):
|
601 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
602 |
+
super().__init__()
|
603 |
+
self.is_decoder = config.is_decoder
|
604 |
+
self.layer = nn.ModuleList()
|
605 |
+
self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias))
|
606 |
+
if self.is_decoder:
|
607 |
+
self.layer.append(T5LayerCrossAttention(config))
|
608 |
+
|
609 |
+
self.layer.append(T5LayerFF(config))
|
610 |
+
|
611 |
+
def forward(
|
612 |
+
self,
|
613 |
+
hidden_states,
|
614 |
+
attention_mask=None,
|
615 |
+
position_bias=None,
|
616 |
+
encoder_hidden_states=None,
|
617 |
+
encoder_attention_mask=None,
|
618 |
+
encoder_decoder_position_bias=None,
|
619 |
+
layer_head_mask=None,
|
620 |
+
cross_attn_layer_head_mask=None,
|
621 |
+
past_key_value=None,
|
622 |
+
use_cache=False,
|
623 |
+
output_attentions=False,
|
624 |
+
return_dict=True,
|
625 |
+
):
|
626 |
+
|
627 |
+
if past_key_value is not None:
|
628 |
+
assert self.is_decoder, "Only decoder can use `past_key_values`"
|
629 |
+
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4
|
630 |
+
|
631 |
+
if len(past_key_value) != expected_num_past_key_values:
|
632 |
+
raise ValueError(
|
633 |
+
f"There should be {expected_num_past_key_values} past states. "
|
634 |
+
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
|
635 |
+
f"Got {len(past_key_value)} past key / value states"
|
636 |
+
)
|
637 |
+
|
638 |
+
self_attn_past_key_value = past_key_value[:2]
|
639 |
+
cross_attn_past_key_value = past_key_value[2:]
|
640 |
+
else:
|
641 |
+
self_attn_past_key_value, cross_attn_past_key_value = None, None
|
642 |
+
|
643 |
+
self_attention_outputs = self.layer[0](
|
644 |
+
hidden_states,
|
645 |
+
attention_mask=attention_mask,
|
646 |
+
position_bias=position_bias,
|
647 |
+
layer_head_mask=layer_head_mask,
|
648 |
+
past_key_value=self_attn_past_key_value,
|
649 |
+
use_cache=use_cache,
|
650 |
+
output_attentions=output_attentions,
|
651 |
+
)
|
652 |
+
hidden_states, present_key_value_state = self_attention_outputs[:2]
|
653 |
+
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
|
654 |
+
|
655 |
+
# clamp inf values to enable fp16 training
|
656 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
657 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
658 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
659 |
+
|
660 |
+
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
|
661 |
+
if do_cross_attention:
|
662 |
+
# the actual query length is unknown for cross attention
|
663 |
+
# if using past key value states. Need to inject it here
|
664 |
+
if present_key_value_state is not None:
|
665 |
+
query_length = present_key_value_state[0].shape[2]
|
666 |
+
else:
|
667 |
+
query_length = None
|
668 |
+
|
669 |
+
cross_attention_outputs = self.layer[1](
|
670 |
+
hidden_states,
|
671 |
+
key_value_states=encoder_hidden_states,
|
672 |
+
attention_mask=encoder_attention_mask,
|
673 |
+
position_bias=encoder_decoder_position_bias,
|
674 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
675 |
+
past_key_value=cross_attn_past_key_value,
|
676 |
+
query_length=query_length,
|
677 |
+
use_cache=use_cache,
|
678 |
+
output_attentions=output_attentions,
|
679 |
+
)
|
680 |
+
hidden_states = cross_attention_outputs[0]
|
681 |
+
|
682 |
+
# clamp inf values to enable fp16 training
|
683 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
684 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
685 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
686 |
+
|
687 |
+
# Combine self attn and cross attn key value states
|
688 |
+
if present_key_value_state is not None:
|
689 |
+
present_key_value_state = present_key_value_state + cross_attention_outputs[1]
|
690 |
+
|
691 |
+
# Keep cross-attention outputs and relative position weights
|
692 |
+
attention_outputs = attention_outputs + cross_attention_outputs[2:]
|
693 |
+
|
694 |
+
# Apply Feed Forward layer
|
695 |
+
hidden_states = self.layer[-1](hidden_states)
|
696 |
+
|
697 |
+
# clamp inf values to enable fp16 training
|
698 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
699 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
700 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
701 |
+
|
702 |
+
outputs = (hidden_states,)
|
703 |
+
|
704 |
+
if use_cache:
|
705 |
+
outputs = outputs + (present_key_value_state,) + attention_outputs
|
706 |
+
else:
|
707 |
+
outputs = outputs + attention_outputs
|
708 |
+
|
709 |
+
return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
710 |
+
|
711 |
+
|
712 |
+
class T5PreTrainedModel(PreTrainedModel):
|
713 |
+
"""
|
714 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
715 |
+
models.
|
716 |
+
"""
|
717 |
+
|
718 |
+
config_class = T5Config
|
719 |
+
load_tf_weights = load_tf_weights_in_t5
|
720 |
+
base_model_prefix = "transformer"
|
721 |
+
is_parallelizable = True
|
722 |
+
supports_gradient_checkpointing = True
|
723 |
+
|
724 |
+
@property
|
725 |
+
def dummy_inputs(self):
|
726 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
727 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
728 |
+
dummy_inputs = {
|
729 |
+
"decoder_input_ids": input_ids,
|
730 |
+
"input_ids": input_ids,
|
731 |
+
"decoder_attention_mask": input_mask,
|
732 |
+
}
|
733 |
+
return dummy_inputs
|
734 |
+
|
735 |
+
def _init_weights(self, module):
|
736 |
+
"""Initialize the weights"""
|
737 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
738 |
+
if isinstance(module, T5LayerNorm):
|
739 |
+
module.weight.data.fill_(factor * 1.0)
|
740 |
+
elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)):
|
741 |
+
# Mesh TensorFlow embeddings initialization
|
742 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
743 |
+
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
744 |
+
elif isinstance(module, T5DenseReluDense):
|
745 |
+
# Mesh TensorFlow FF initialization
|
746 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
747 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
748 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
749 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
750 |
+
module.wi.bias.data.zero_()
|
751 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
752 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
753 |
+
module.wo.bias.data.zero_()
|
754 |
+
elif isinstance(module, T5DenseGatedGeluDense):
|
755 |
+
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
756 |
+
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
|
757 |
+
module.wi_0.bias.data.zero_()
|
758 |
+
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
759 |
+
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
|
760 |
+
module.wi_1.bias.data.zero_()
|
761 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
762 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
763 |
+
module.wo.bias.data.zero_()
|
764 |
+
elif isinstance(module, T5Attention):
|
765 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
766 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
767 |
+
d_model = self.config.d_model
|
768 |
+
key_value_proj_dim = self.config.d_kv
|
769 |
+
n_heads = self.config.num_heads
|
770 |
+
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
771 |
+
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
772 |
+
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model ** -0.5))
|
773 |
+
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
774 |
+
if module.has_relative_attention_bias:
|
775 |
+
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
|
776 |
+
|
777 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
778 |
+
if isinstance(module, (T5Attention, T5Stack)):
|
779 |
+
module.gradient_checkpointing = value
|
780 |
+
|
781 |
+
def _shift_right(self, input_ids):
|
782 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
783 |
+
pad_token_id = self.config.pad_token_id
|
784 |
+
|
785 |
+
assert (
|
786 |
+
decoder_start_token_id is not None
|
787 |
+
), "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. See T5 docs for more information"
|
788 |
+
|
789 |
+
# shift inputs to the right
|
790 |
+
if is_torch_fx_proxy(input_ids):
|
791 |
+
# Item assignment is not supported natively for proxies.
|
792 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
793 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
794 |
+
else:
|
795 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
796 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
797 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
798 |
+
|
799 |
+
assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined."
|
800 |
+
# replace possible -100 values in labels by `pad_token_id`
|
801 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
802 |
+
|
803 |
+
assert torch.all(shifted_input_ids >= 0).item(), "Verify that `shifted_input_ids` has only positive values"
|
804 |
+
|
805 |
+
return shifted_input_ids
|
806 |
+
|
807 |
+
|
808 |
+
class T5Stack(T5PreTrainedModel):
|
809 |
+
def __init__(self, config, embed_tokens=None):
|
810 |
+
super().__init__(config)
|
811 |
+
|
812 |
+
self.embed_tokens = embed_tokens
|
813 |
+
self.is_decoder = config.is_decoder
|
814 |
+
|
815 |
+
self.block = nn.ModuleList(
|
816 |
+
[T5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)]
|
817 |
+
)
|
818 |
+
self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
819 |
+
self.dropout = nn.Dropout(config.dropout_rate)
|
820 |
+
|
821 |
+
# Initialize weights and apply final processing
|
822 |
+
self.post_init()
|
823 |
+
# Model parallel
|
824 |
+
self.model_parallel = False
|
825 |
+
self.device_map = None
|
826 |
+
self.gradient_checkpointing = False
|
827 |
+
|
828 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
829 |
+
def parallelize(self, device_map=None):
|
830 |
+
# Check validity of device_map
|
831 |
+
self.device_map = (
|
832 |
+
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
|
833 |
+
)
|
834 |
+
assert_device_map(self.device_map, len(self.block))
|
835 |
+
self.model_parallel = True
|
836 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
837 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
838 |
+
# Load onto devices
|
839 |
+
for k, v in self.device_map.items():
|
840 |
+
for layer in v:
|
841 |
+
cuda_device = "cuda:" + str(k)
|
842 |
+
self.block[layer] = self.block[layer].to(cuda_device)
|
843 |
+
|
844 |
+
# Set embed_tokens to first layer
|
845 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
846 |
+
# Set final layer norm to last device
|
847 |
+
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
|
848 |
+
|
849 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
850 |
+
def deparallelize(self):
|
851 |
+
self.model_parallel = False
|
852 |
+
self.device_map = None
|
853 |
+
self.first_device = "cpu"
|
854 |
+
self.last_device = "cpu"
|
855 |
+
for i in range(len(self.block)):
|
856 |
+
self.block[i] = self.block[i].to("cpu")
|
857 |
+
self.embed_tokens = self.embed_tokens.to("cpu")
|
858 |
+
self.final_layer_norm = self.final_layer_norm.to("cpu")
|
859 |
+
torch.cuda.empty_cache()
|
860 |
+
|
861 |
+
def get_input_embeddings(self):
|
862 |
+
return self.embed_tokens
|
863 |
+
|
864 |
+
def set_input_embeddings(self, new_embeddings):
|
865 |
+
self.embed_tokens = new_embeddings
|
866 |
+
|
867 |
+
def forward(
|
868 |
+
self,
|
869 |
+
input_ids=None,
|
870 |
+
attention_mask=None,
|
871 |
+
encoder_hidden_states=None,
|
872 |
+
encoder_attention_mask=None,
|
873 |
+
inputs_embeds=None,
|
874 |
+
head_mask=None,
|
875 |
+
cross_attn_head_mask=None,
|
876 |
+
past_key_values=None,
|
877 |
+
use_cache=None,
|
878 |
+
output_attentions=None,
|
879 |
+
output_hidden_states=None,
|
880 |
+
return_dict=None,
|
881 |
+
):
|
882 |
+
# Model parallel
|
883 |
+
if self.model_parallel:
|
884 |
+
torch.cuda.set_device(self.first_device)
|
885 |
+
self.embed_tokens = self.embed_tokens.to(self.first_device)
|
886 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
887 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
888 |
+
output_hidden_states = (
|
889 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
890 |
+
)
|
891 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
892 |
+
|
893 |
+
if input_ids is not None and inputs_embeds is not None:
|
894 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
895 |
+
raise ValueError(
|
896 |
+
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
|
897 |
+
)
|
898 |
+
elif input_ids is not None:
|
899 |
+
input_shape = input_ids.size()
|
900 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
901 |
+
elif inputs_embeds is not None:
|
902 |
+
input_shape = inputs_embeds.size()[:-1]
|
903 |
+
else:
|
904 |
+
err_msg_prefix = "decoder_" if self.is_decoder else ""
|
905 |
+
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
|
906 |
+
|
907 |
+
if inputs_embeds is None:
|
908 |
+
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
|
909 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
910 |
+
|
911 |
+
batch_size, seq_length = input_shape
|
912 |
+
|
913 |
+
# required mask seq length can be calculated via length of past
|
914 |
+
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
|
915 |
+
|
916 |
+
if use_cache is True:
|
917 |
+
assert self.is_decoder, f"`use_cache` can only be set to `True` if {self} is used as a decoder"
|
918 |
+
|
919 |
+
if attention_mask is None:
|
920 |
+
attention_mask = torch.ones(batch_size, mask_seq_length).to(inputs_embeds.device)
|
921 |
+
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None:
|
922 |
+
encoder_seq_length = encoder_hidden_states.shape[1]
|
923 |
+
encoder_attention_mask = torch.ones(
|
924 |
+
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long
|
925 |
+
)
|
926 |
+
|
927 |
+
# initialize past_key_values with `None` if past does not exist
|
928 |
+
if past_key_values is None:
|
929 |
+
past_key_values = [None] * len(self.block)
|
930 |
+
|
931 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
932 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
933 |
+
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape, inputs_embeds.device)
|
934 |
+
|
935 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
936 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
937 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
938 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
939 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
940 |
+
if encoder_attention_mask is None:
|
941 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device)
|
942 |
+
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
943 |
+
else:
|
944 |
+
encoder_extended_attention_mask = None
|
945 |
+
|
946 |
+
# Prepare head mask if needed
|
947 |
+
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
|
948 |
+
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
|
949 |
+
present_key_value_states = () if use_cache else None
|
950 |
+
all_hidden_states = () if output_hidden_states else None
|
951 |
+
all_attentions = () if output_attentions else None
|
952 |
+
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
|
953 |
+
position_bias = None
|
954 |
+
encoder_decoder_position_bias = None
|
955 |
+
|
956 |
+
hidden_states = self.dropout(inputs_embeds)
|
957 |
+
|
958 |
+
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
|
959 |
+
layer_head_mask = head_mask[i]
|
960 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[i]
|
961 |
+
# Model parallel
|
962 |
+
if self.model_parallel:
|
963 |
+
torch.cuda.set_device(hidden_states.device)
|
964 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
965 |
+
if attention_mask is not None:
|
966 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
967 |
+
if position_bias is not None:
|
968 |
+
position_bias = position_bias.to(hidden_states.device)
|
969 |
+
if encoder_hidden_states is not None:
|
970 |
+
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
|
971 |
+
if encoder_extended_attention_mask is not None:
|
972 |
+
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
|
973 |
+
if encoder_decoder_position_bias is not None:
|
974 |
+
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
|
975 |
+
if layer_head_mask is not None:
|
976 |
+
layer_head_mask = layer_head_mask.to(hidden_states.device)
|
977 |
+
if cross_attn_layer_head_mask is not None:
|
978 |
+
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
|
979 |
+
if output_hidden_states:
|
980 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
981 |
+
|
982 |
+
if self.gradient_checkpointing and self.training:
|
983 |
+
if use_cache:
|
984 |
+
logger.warn(
|
985 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
986 |
+
)
|
987 |
+
use_cache = False
|
988 |
+
|
989 |
+
def create_custom_forward(module):
|
990 |
+
def custom_forward(*inputs):
|
991 |
+
return tuple(module(*inputs, use_cache, output_attentions))
|
992 |
+
|
993 |
+
return custom_forward
|
994 |
+
|
995 |
+
layer_outputs = checkpoint(
|
996 |
+
create_custom_forward(layer_module),
|
997 |
+
hidden_states,
|
998 |
+
extended_attention_mask,
|
999 |
+
position_bias,
|
1000 |
+
encoder_hidden_states,
|
1001 |
+
encoder_extended_attention_mask,
|
1002 |
+
encoder_decoder_position_bias,
|
1003 |
+
layer_head_mask,
|
1004 |
+
cross_attn_layer_head_mask,
|
1005 |
+
None, # past_key_value is always None with gradient checkpointing
|
1006 |
+
)
|
1007 |
+
else:
|
1008 |
+
layer_outputs = layer_module(
|
1009 |
+
hidden_states,
|
1010 |
+
attention_mask=extended_attention_mask,
|
1011 |
+
position_bias=position_bias,
|
1012 |
+
encoder_hidden_states=encoder_hidden_states,
|
1013 |
+
encoder_attention_mask=encoder_extended_attention_mask,
|
1014 |
+
encoder_decoder_position_bias=encoder_decoder_position_bias,
|
1015 |
+
layer_head_mask=layer_head_mask,
|
1016 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1017 |
+
past_key_value=past_key_value,
|
1018 |
+
use_cache=use_cache,
|
1019 |
+
output_attentions=output_attentions,
|
1020 |
+
)
|
1021 |
+
|
1022 |
+
# layer_outputs is a tuple with:
|
1023 |
+
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
1024 |
+
if use_cache is False:
|
1025 |
+
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
|
1026 |
+
|
1027 |
+
hidden_states, present_key_value_state = layer_outputs[:2]
|
1028 |
+
|
1029 |
+
# We share the position biases between the layers - the first layer store them
|
1030 |
+
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
|
1031 |
+
# (cross-attention position bias), (cross-attention weights)
|
1032 |
+
position_bias = layer_outputs[2]
|
1033 |
+
if self.is_decoder and encoder_hidden_states is not None:
|
1034 |
+
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
|
1035 |
+
# append next layer key value states
|
1036 |
+
if use_cache:
|
1037 |
+
present_key_value_states = present_key_value_states + (present_key_value_state,)
|
1038 |
+
|
1039 |
+
if output_attentions:
|
1040 |
+
all_attentions = all_attentions + (layer_outputs[3],)
|
1041 |
+
if self.is_decoder:
|
1042 |
+
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
|
1043 |
+
|
1044 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
1045 |
+
if self.model_parallel:
|
1046 |
+
for k, v in self.device_map.items():
|
1047 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
1048 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
1049 |
+
|
1050 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
1051 |
+
hidden_states = self.dropout(hidden_states)
|
1052 |
+
|
1053 |
+
# Add last layer
|
1054 |
+
if output_hidden_states:
|
1055 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1056 |
+
|
1057 |
+
if not return_dict:
|
1058 |
+
return tuple(
|
1059 |
+
v
|
1060 |
+
for v in [
|
1061 |
+
hidden_states,
|
1062 |
+
present_key_value_states,
|
1063 |
+
all_hidden_states,
|
1064 |
+
all_attentions,
|
1065 |
+
all_cross_attentions,
|
1066 |
+
]
|
1067 |
+
if v is not None
|
1068 |
+
)
|
1069 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1070 |
+
last_hidden_state=hidden_states,
|
1071 |
+
past_key_values=present_key_value_states,
|
1072 |
+
hidden_states=all_hidden_states,
|
1073 |
+
attentions=all_attentions,
|
1074 |
+
cross_attentions=all_cross_attentions,
|
1075 |
+
)
|
1076 |
+
|
1077 |
+
|
1078 |
+
T5_START_DOCSTRING = r"""
|
1079 |
+
|
1080 |
+
The T5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
|
1081 |
+
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
|
1082 |
+
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
|
1083 |
+
text-to-text denoising generative setting.
|
1084 |
+
|
1085 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
1086 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
1087 |
+
etc.)
|
1088 |
+
|
1089 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
1090 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
1091 |
+
and behavior.
|
1092 |
+
|
1093 |
+
Parameters:
|
1094 |
+
config ([`T5Config`]): Model configuration class with all the parameters of the model.
|
1095 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
1096 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
1097 |
+
"""
|
1098 |
+
|
1099 |
+
T5_INPUTS_DOCSTRING = r"""
|
1100 |
+
Args:
|
1101 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1102 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1103 |
+
should be able to pad the inputs on both the right and the left.
|
1104 |
+
|
1105 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1106 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1107 |
+
|
1108 |
+
[What are input IDs?](../glossary#input-ids)
|
1109 |
+
|
1110 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1111 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1112 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1113 |
+
|
1114 |
+
- 1 for tokens that are **not masked**,
|
1115 |
+
- 0 for tokens that are **masked**.
|
1116 |
+
|
1117 |
+
[What are attention masks?](../glossary#attention-mask)
|
1118 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1119 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
1120 |
+
|
1121 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1122 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1123 |
+
|
1124 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
1125 |
+
|
1126 |
+
T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
1127 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
1128 |
+
|
1129 |
+
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5
|
1130 |
+
Training](./t5#training).
|
1131 |
+
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
1132 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
1133 |
+
be used by default.
|
1134 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1135 |
+
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
|
1136 |
+
1]`:
|
1137 |
+
|
1138 |
+
- 1 indicates the head is **not masked**,
|
1139 |
+
- 0 indicates the head is **masked**.
|
1140 |
+
|
1141 |
+
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1142 |
+
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
|
1143 |
+
1]`:
|
1144 |
+
|
1145 |
+
- 1 indicates the head is **not masked**,
|
1146 |
+
- 0 indicates the head is **masked**.
|
1147 |
+
|
1148 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1149 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
|
1150 |
+
`[0, 1]`:
|
1151 |
+
|
1152 |
+
- 1 indicates the head is **not masked**,
|
1153 |
+
- 0 indicates the head is **masked**.
|
1154 |
+
|
1155 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
1156 |
+
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
|
1157 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
|
1158 |
+
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
1159 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
1160 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
1161 |
+
|
1162 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
1163 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
1164 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1165 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1166 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1167 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1168 |
+
model's internal embedding lookup matrix.
|
1169 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
1170 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
1171 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
1172 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
1173 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
1174 |
+
|
1175 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
1176 |
+
of `inputs_embeds`.
|
1177 |
+
|
1178 |
+
use_cache (`bool`, *optional*):
|
1179 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
1180 |
+
`past_key_values`).
|
1181 |
+
|
1182 |
+
output_attentions (`bool`, *optional*):
|
1183 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1184 |
+
tensors for more detail.
|
1185 |
+
output_hidden_states (`bool`, *optional*):
|
1186 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1187 |
+
more detail.
|
1188 |
+
return_dict (`bool`, *optional*):
|
1189 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
1190 |
+
"""
|
1191 |
+
|
1192 |
+
T5_ENCODER_INPUTS_DOCSTRING = r"""
|
1193 |
+
Args:
|
1194 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1195 |
+
Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you
|
1196 |
+
should be able to pad the inputs on both the right and the left.
|
1197 |
+
|
1198 |
+
Indices can be obtained using [`T5Tokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1199 |
+
[`PreTrainedTokenizer.__call__`] for detail.
|
1200 |
+
|
1201 |
+
To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training).
|
1202 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1203 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1204 |
+
|
1205 |
+
- 1 for tokens that are **not masked**,
|
1206 |
+
- 0 for tokens that are **masked**.
|
1207 |
+
|
1208 |
+
[What are attention masks?](../glossary#attention-mask)
|
1209 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
1210 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
1211 |
+
|
1212 |
+
- 1 indicates the head is **not masked**,
|
1213 |
+
- 0 indicates the head is **masked**.
|
1214 |
+
|
1215 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1216 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
1217 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
1218 |
+
model's internal embedding lookup matrix.
|
1219 |
+
output_attentions (`bool`, *optional*):
|
1220 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
1221 |
+
tensors for more detail.
|
1222 |
+
output_hidden_states (`bool`, *optional*):
|
1223 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
1224 |
+
more detail.
|
1225 |
+
return_dict (`bool`, *optional*):
|
1226 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
|
1227 |
+
"""
|
1228 |
+
|
1229 |
+
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1230 |
+
__HEAD_MASK_WARNING_MSG = """
|
1231 |
+
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
|
1232 |
+
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
|
1233 |
+
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
|
1234 |
+
num_heads)`.
|
1235 |
+
"""
|
1236 |
+
|
1237 |
+
|
1238 |
+
@add_start_docstrings(
|
1239 |
+
"The bare T5 Model transformer outputting raw hidden-states without any specific head on top.",
|
1240 |
+
T5_START_DOCSTRING,
|
1241 |
+
)
|
1242 |
+
class T5Model(T5PreTrainedModel):
|
1243 |
+
_keys_to_ignore_on_load_missing = [
|
1244 |
+
r"encoder\.embed_tokens\.weight",
|
1245 |
+
r"decoder\.embed_tokens\.weight",
|
1246 |
+
]
|
1247 |
+
_keys_to_ignore_on_load_unexpected = [
|
1248 |
+
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
1249 |
+
]
|
1250 |
+
|
1251 |
+
def __init__(self, config: T5Config):
|
1252 |
+
super().__init__(config)
|
1253 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1254 |
+
|
1255 |
+
encoder_config = copy.deepcopy(config)
|
1256 |
+
encoder_config.is_decoder = False
|
1257 |
+
encoder_config.use_cache = False
|
1258 |
+
encoder_config.is_encoder_decoder = False
|
1259 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1260 |
+
|
1261 |
+
decoder_config = copy.deepcopy(config)
|
1262 |
+
decoder_config.is_decoder = True
|
1263 |
+
decoder_config.is_encoder_decoder = False
|
1264 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1265 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1266 |
+
|
1267 |
+
# Initialize weights and apply final processing
|
1268 |
+
self.post_init()
|
1269 |
+
|
1270 |
+
# Model parallel
|
1271 |
+
self.model_parallel = False
|
1272 |
+
self.device_map = None
|
1273 |
+
|
1274 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1275 |
+
def parallelize(self, device_map=None):
|
1276 |
+
self.device_map = (
|
1277 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1278 |
+
if device_map is None
|
1279 |
+
else device_map
|
1280 |
+
)
|
1281 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1282 |
+
self.encoder.parallelize(self.device_map)
|
1283 |
+
self.decoder.parallelize(self.device_map)
|
1284 |
+
self.model_parallel = True
|
1285 |
+
|
1286 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1287 |
+
def deparallelize(self):
|
1288 |
+
self.encoder.deparallelize()
|
1289 |
+
self.decoder.deparallelize()
|
1290 |
+
self.encoder = self.encoder.to("cpu")
|
1291 |
+
self.decoder = self.decoder.to("cpu")
|
1292 |
+
self.model_parallel = False
|
1293 |
+
self.device_map = None
|
1294 |
+
torch.cuda.empty_cache()
|
1295 |
+
|
1296 |
+
def get_input_embeddings(self):
|
1297 |
+
return self.shared
|
1298 |
+
|
1299 |
+
def set_input_embeddings(self, new_embeddings):
|
1300 |
+
self.shared = new_embeddings
|
1301 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1302 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1303 |
+
|
1304 |
+
def get_encoder(self):
|
1305 |
+
return self.encoder
|
1306 |
+
|
1307 |
+
def get_decoder(self):
|
1308 |
+
return self.decoder
|
1309 |
+
|
1310 |
+
def _prune_heads(self, heads_to_prune):
|
1311 |
+
"""
|
1312 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1313 |
+
class PreTrainedModel
|
1314 |
+
"""
|
1315 |
+
for layer, heads in heads_to_prune.items():
|
1316 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1317 |
+
|
1318 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1319 |
+
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
|
1320 |
+
def forward(
|
1321 |
+
self,
|
1322 |
+
input_ids=None,
|
1323 |
+
attention_mask=None,
|
1324 |
+
decoder_input_ids=None,
|
1325 |
+
decoder_attention_mask=None,
|
1326 |
+
head_mask=None,
|
1327 |
+
decoder_head_mask=None,
|
1328 |
+
cross_attn_head_mask=None,
|
1329 |
+
encoder_outputs=None,
|
1330 |
+
past_key_values=None,
|
1331 |
+
inputs_embeds=None,
|
1332 |
+
decoder_inputs_embeds=None,
|
1333 |
+
use_cache=None,
|
1334 |
+
output_attentions=None,
|
1335 |
+
output_hidden_states=None,
|
1336 |
+
return_dict=None,
|
1337 |
+
):
|
1338 |
+
r"""
|
1339 |
+
Returns:
|
1340 |
+
|
1341 |
+
Example:
|
1342 |
+
|
1343 |
+
```python
|
1344 |
+
>>> from transformers import T5Tokenizer, T5Model
|
1345 |
+
|
1346 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1347 |
+
>>> model = T5Model.from_pretrained("t5-small")
|
1348 |
+
|
1349 |
+
>>> input_ids = tokenizer(
|
1350 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1351 |
+
>>> ).input_ids # Batch size 1
|
1352 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1353 |
+
|
1354 |
+
>>> # forward pass
|
1355 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1356 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1357 |
+
```"""
|
1358 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1359 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1360 |
+
|
1361 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1362 |
+
if head_mask is not None and decoder_head_mask is None:
|
1363 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1364 |
+
decoder_head_mask = head_mask
|
1365 |
+
|
1366 |
+
# Encode if needed (training, first prediction pass)
|
1367 |
+
if encoder_outputs is None:
|
1368 |
+
encoder_outputs = self.encoder(
|
1369 |
+
input_ids=input_ids,
|
1370 |
+
attention_mask=attention_mask,
|
1371 |
+
inputs_embeds=inputs_embeds,
|
1372 |
+
head_mask=head_mask,
|
1373 |
+
output_attentions=output_attentions,
|
1374 |
+
output_hidden_states=output_hidden_states,
|
1375 |
+
return_dict=return_dict,
|
1376 |
+
)
|
1377 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1378 |
+
encoder_outputs = BaseModelOutput(
|
1379 |
+
last_hidden_state=encoder_outputs[0],
|
1380 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1381 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
hidden_states = encoder_outputs[0]
|
1385 |
+
if self.model_parallel:
|
1386 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1387 |
+
# Set device for model parallelism
|
1388 |
+
if self.model_parallel:
|
1389 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1390 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1391 |
+
if decoder_input_ids is not None:
|
1392 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1393 |
+
if attention_mask is not None:
|
1394 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1395 |
+
if decoder_attention_mask is not None:
|
1396 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1397 |
+
|
1398 |
+
# Decode
|
1399 |
+
decoder_outputs = self.decoder(
|
1400 |
+
input_ids=decoder_input_ids,
|
1401 |
+
attention_mask=decoder_attention_mask,
|
1402 |
+
inputs_embeds=decoder_inputs_embeds,
|
1403 |
+
past_key_values=past_key_values,
|
1404 |
+
encoder_hidden_states=hidden_states,
|
1405 |
+
encoder_attention_mask=attention_mask,
|
1406 |
+
head_mask=decoder_head_mask,
|
1407 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1408 |
+
use_cache=use_cache,
|
1409 |
+
output_attentions=output_attentions,
|
1410 |
+
output_hidden_states=output_hidden_states,
|
1411 |
+
return_dict=return_dict,
|
1412 |
+
)
|
1413 |
+
|
1414 |
+
if not return_dict:
|
1415 |
+
return decoder_outputs + encoder_outputs
|
1416 |
+
|
1417 |
+
return Seq2SeqModelOutput(
|
1418 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1419 |
+
past_key_values=decoder_outputs.past_key_values,
|
1420 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1421 |
+
decoder_attentions=decoder_outputs.attentions,
|
1422 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1423 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1424 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1425 |
+
encoder_attentions=encoder_outputs.attentions,
|
1426 |
+
)
|
1427 |
+
|
1428 |
+
|
1429 |
+
@add_start_docstrings("""T5 Model with a `language modeling` head on top.""", T5_START_DOCSTRING)
|
1430 |
+
class T5ForConditionalGeneration(T5PreTrainedModel):
|
1431 |
+
_keys_to_ignore_on_load_missing = [
|
1432 |
+
r"encoder\.embed_tokens\.weight",
|
1433 |
+
r"decoder\.embed_tokens\.weight",
|
1434 |
+
r"lm_head\.weight",
|
1435 |
+
]
|
1436 |
+
_keys_to_ignore_on_load_unexpected = [
|
1437 |
+
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
|
1438 |
+
]
|
1439 |
+
|
1440 |
+
def __init__(self, config):
|
1441 |
+
super().__init__(config)
|
1442 |
+
self.model_dim = config.d_model
|
1443 |
+
|
1444 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1445 |
+
|
1446 |
+
encoder_config = copy.deepcopy(config)
|
1447 |
+
encoder_config.is_decoder = False
|
1448 |
+
encoder_config.use_cache = False
|
1449 |
+
encoder_config.is_encoder_decoder = False
|
1450 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1451 |
+
|
1452 |
+
decoder_config = copy.deepcopy(config)
|
1453 |
+
decoder_config.is_decoder = True
|
1454 |
+
decoder_config.is_encoder_decoder = False
|
1455 |
+
decoder_config.num_layers = config.num_decoder_layers
|
1456 |
+
self.decoder = T5Stack(decoder_config, self.shared)
|
1457 |
+
|
1458 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1459 |
+
|
1460 |
+
# Initialize weights and apply final processing
|
1461 |
+
self.post_init()
|
1462 |
+
|
1463 |
+
# Model parallel
|
1464 |
+
self.model_parallel = False
|
1465 |
+
self.device_map = None
|
1466 |
+
|
1467 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1468 |
+
def parallelize(self, device_map=None):
|
1469 |
+
self.device_map = (
|
1470 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1471 |
+
if device_map is None
|
1472 |
+
else device_map
|
1473 |
+
)
|
1474 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1475 |
+
self.encoder.parallelize(self.device_map)
|
1476 |
+
self.decoder.parallelize(self.device_map)
|
1477 |
+
self.lm_head = self.lm_head.to(self.decoder.first_device)
|
1478 |
+
self.model_parallel = True
|
1479 |
+
|
1480 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1481 |
+
def deparallelize(self):
|
1482 |
+
self.encoder.deparallelize()
|
1483 |
+
self.decoder.deparallelize()
|
1484 |
+
self.encoder = self.encoder.to("cpu")
|
1485 |
+
self.decoder = self.decoder.to("cpu")
|
1486 |
+
self.lm_head = self.lm_head.to("cpu")
|
1487 |
+
self.model_parallel = False
|
1488 |
+
self.device_map = None
|
1489 |
+
torch.cuda.empty_cache()
|
1490 |
+
|
1491 |
+
def get_input_embeddings(self):
|
1492 |
+
return self.shared
|
1493 |
+
|
1494 |
+
def set_input_embeddings(self, new_embeddings):
|
1495 |
+
self.shared = new_embeddings
|
1496 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1497 |
+
self.decoder.set_input_embeddings(new_embeddings)
|
1498 |
+
|
1499 |
+
def set_output_embeddings(self, new_embeddings):
|
1500 |
+
self.lm_head = new_embeddings
|
1501 |
+
|
1502 |
+
def get_output_embeddings(self):
|
1503 |
+
return self.lm_head
|
1504 |
+
|
1505 |
+
def get_encoder(self):
|
1506 |
+
return self.encoder
|
1507 |
+
|
1508 |
+
def get_decoder(self):
|
1509 |
+
return self.decoder
|
1510 |
+
|
1511 |
+
@add_start_docstrings_to_model_forward(T5_INPUTS_DOCSTRING)
|
1512 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1513 |
+
def forward(
|
1514 |
+
self,
|
1515 |
+
input_ids=None,
|
1516 |
+
attention_mask=None,
|
1517 |
+
decoder_input_ids=None,
|
1518 |
+
decoder_attention_mask=None,
|
1519 |
+
head_mask=None,
|
1520 |
+
decoder_head_mask=None,
|
1521 |
+
cross_attn_head_mask=None,
|
1522 |
+
encoder_outputs=None,
|
1523 |
+
past_key_values=None,
|
1524 |
+
inputs_embeds=None,
|
1525 |
+
decoder_inputs_embeds=None,
|
1526 |
+
labels=None,
|
1527 |
+
use_cache=None,
|
1528 |
+
output_attentions=None,
|
1529 |
+
output_hidden_states=None,
|
1530 |
+
return_dict=None,
|
1531 |
+
):
|
1532 |
+
r"""
|
1533 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1534 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
|
1535 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1536 |
+
labels in `[0, ..., config.vocab_size]`
|
1537 |
+
|
1538 |
+
Returns:
|
1539 |
+
|
1540 |
+
Examples:
|
1541 |
+
|
1542 |
+
```python
|
1543 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
1544 |
+
|
1545 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1546 |
+
>>> model = T5ForConditionalGeneration.from_pretrained("t5-small")
|
1547 |
+
|
1548 |
+
>>> # training
|
1549 |
+
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
|
1550 |
+
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
|
1551 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
1552 |
+
>>> loss = outputs.loss
|
1553 |
+
>>> logits = outputs.logits
|
1554 |
+
|
1555 |
+
>>> # inference
|
1556 |
+
>>> input_ids = tokenizer(
|
1557 |
+
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
|
1558 |
+
>>> ).input_ids # Batch size 1
|
1559 |
+
>>> outputs = model.generate(input_ids)
|
1560 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
1561 |
+
>>> # studies have shown that owning a dog is good for you.
|
1562 |
+
```"""
|
1563 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1564 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1565 |
+
|
1566 |
+
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
|
1567 |
+
if head_mask is not None and decoder_head_mask is None:
|
1568 |
+
if self.config.num_layers == self.config.num_decoder_layers:
|
1569 |
+
decoder_head_mask = head_mask
|
1570 |
+
|
1571 |
+
# Encode if needed (training, first prediction pass)
|
1572 |
+
if encoder_outputs is None:
|
1573 |
+
# Convert encoder inputs in embeddings if needed
|
1574 |
+
encoder_outputs = self.encoder(
|
1575 |
+
input_ids=input_ids,
|
1576 |
+
attention_mask=attention_mask,
|
1577 |
+
inputs_embeds=inputs_embeds,
|
1578 |
+
head_mask=head_mask,
|
1579 |
+
output_attentions=output_attentions,
|
1580 |
+
output_hidden_states=output_hidden_states,
|
1581 |
+
return_dict=return_dict,
|
1582 |
+
)
|
1583 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1584 |
+
encoder_outputs = BaseModelOutput(
|
1585 |
+
last_hidden_state=encoder_outputs[0],
|
1586 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1587 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1588 |
+
)
|
1589 |
+
|
1590 |
+
hidden_states = encoder_outputs[0]
|
1591 |
+
|
1592 |
+
if self.model_parallel:
|
1593 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1594 |
+
|
1595 |
+
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
|
1596 |
+
# get decoder inputs from shifting lm labels to the right
|
1597 |
+
decoder_input_ids = self._shift_right(labels)
|
1598 |
+
|
1599 |
+
# Set device for model parallelism
|
1600 |
+
if self.model_parallel:
|
1601 |
+
torch.cuda.set_device(self.decoder.first_device)
|
1602 |
+
hidden_states = hidden_states.to(self.decoder.first_device)
|
1603 |
+
if decoder_input_ids is not None:
|
1604 |
+
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
|
1605 |
+
if attention_mask is not None:
|
1606 |
+
attention_mask = attention_mask.to(self.decoder.first_device)
|
1607 |
+
if decoder_attention_mask is not None:
|
1608 |
+
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
|
1609 |
+
|
1610 |
+
# Decode
|
1611 |
+
decoder_outputs = self.decoder(
|
1612 |
+
input_ids=decoder_input_ids,
|
1613 |
+
attention_mask=decoder_attention_mask,
|
1614 |
+
inputs_embeds=decoder_inputs_embeds,
|
1615 |
+
past_key_values=past_key_values,
|
1616 |
+
encoder_hidden_states=hidden_states,
|
1617 |
+
encoder_attention_mask=attention_mask,
|
1618 |
+
head_mask=decoder_head_mask,
|
1619 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1620 |
+
use_cache=use_cache,
|
1621 |
+
output_attentions=output_attentions,
|
1622 |
+
output_hidden_states=output_hidden_states,
|
1623 |
+
return_dict=return_dict,
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
sequence_output = decoder_outputs[0]
|
1627 |
+
|
1628 |
+
# Set device for model parallelism
|
1629 |
+
if self.model_parallel:
|
1630 |
+
torch.cuda.set_device(self.encoder.first_device)
|
1631 |
+
self.lm_head = self.lm_head.to(self.encoder.first_device)
|
1632 |
+
sequence_output = sequence_output.to(self.lm_head.weight.device)
|
1633 |
+
|
1634 |
+
if self.config.tie_word_embeddings:
|
1635 |
+
# Rescale output before projecting on vocab
|
1636 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
|
1637 |
+
sequence_output = sequence_output * (self.model_dim ** -0.5)
|
1638 |
+
|
1639 |
+
lm_logits = self.lm_head(sequence_output)
|
1640 |
+
|
1641 |
+
loss = None
|
1642 |
+
if labels is not None:
|
1643 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1644 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1645 |
+
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
|
1646 |
+
|
1647 |
+
if not return_dict:
|
1648 |
+
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
|
1649 |
+
return ((loss,) + output) if loss is not None else output
|
1650 |
+
|
1651 |
+
return Seq2SeqLMOutput(
|
1652 |
+
loss=loss,
|
1653 |
+
logits=lm_logits,
|
1654 |
+
past_key_values=decoder_outputs.past_key_values,
|
1655 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1656 |
+
decoder_attentions=decoder_outputs.attentions,
|
1657 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1658 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1659 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1660 |
+
encoder_attentions=encoder_outputs.attentions,
|
1661 |
+
)
|
1662 |
+
|
1663 |
+
def prepare_inputs_for_generation(
|
1664 |
+
self,
|
1665 |
+
input_ids,
|
1666 |
+
past=None,
|
1667 |
+
attention_mask=None,
|
1668 |
+
head_mask=None,
|
1669 |
+
decoder_head_mask=None,
|
1670 |
+
cross_attn_head_mask=None,
|
1671 |
+
use_cache=None,
|
1672 |
+
encoder_outputs=None,
|
1673 |
+
**kwargs
|
1674 |
+
):
|
1675 |
+
|
1676 |
+
# cut decoder_input_ids if past is used
|
1677 |
+
if past is not None:
|
1678 |
+
input_ids = input_ids[:, -1:]
|
1679 |
+
|
1680 |
+
return {
|
1681 |
+
"decoder_input_ids": input_ids,
|
1682 |
+
"past_key_values": past,
|
1683 |
+
"encoder_outputs": encoder_outputs,
|
1684 |
+
"attention_mask": attention_mask,
|
1685 |
+
"head_mask": head_mask,
|
1686 |
+
"decoder_head_mask": decoder_head_mask,
|
1687 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1688 |
+
"use_cache": use_cache,
|
1689 |
+
}
|
1690 |
+
|
1691 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1692 |
+
return self._shift_right(labels)
|
1693 |
+
|
1694 |
+
def _reorder_cache(self, past, beam_idx):
|
1695 |
+
# if decoder past is not included in output
|
1696 |
+
# speedy decoding is disabled and no need to reorder
|
1697 |
+
if past is None:
|
1698 |
+
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
|
1699 |
+
return past
|
1700 |
+
|
1701 |
+
reordered_decoder_past = ()
|
1702 |
+
for layer_past_states in past:
|
1703 |
+
# get the correct batch idx from layer past batch dim
|
1704 |
+
# batch dim of `past` is at 2nd position
|
1705 |
+
reordered_layer_past_states = ()
|
1706 |
+
for layer_past_state in layer_past_states:
|
1707 |
+
# need to set correct `past` for each of the four key / value states
|
1708 |
+
reordered_layer_past_states = reordered_layer_past_states + (
|
1709 |
+
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
assert reordered_layer_past_states[0].shape == layer_past_states[0].shape
|
1713 |
+
assert len(reordered_layer_past_states) == len(layer_past_states)
|
1714 |
+
|
1715 |
+
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
|
1716 |
+
return reordered_decoder_past
|
1717 |
+
|
1718 |
+
|
1719 |
+
@add_start_docstrings(
|
1720 |
+
"The bare T5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
|
1721 |
+
T5_START_DOCSTRING,
|
1722 |
+
)
|
1723 |
+
class T5EncoderModel(T5PreTrainedModel):
|
1724 |
+
authorized_missing_keys = [
|
1725 |
+
r"encoder\.embed_tokens\.weight",
|
1726 |
+
]
|
1727 |
+
|
1728 |
+
def __init__(self, config: T5Config):
|
1729 |
+
super().__init__(config)
|
1730 |
+
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
1731 |
+
|
1732 |
+
encoder_config = copy.deepcopy(config)
|
1733 |
+
encoder_config.use_cache = False
|
1734 |
+
encoder_config.is_encoder_decoder = False
|
1735 |
+
self.encoder = T5Stack(encoder_config, self.shared)
|
1736 |
+
|
1737 |
+
# Initialize weights and apply final processing
|
1738 |
+
self.post_init()
|
1739 |
+
|
1740 |
+
# Model parallel
|
1741 |
+
self.model_parallel = False
|
1742 |
+
self.device_map = None
|
1743 |
+
|
1744 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1745 |
+
def parallelize(self, device_map=None):
|
1746 |
+
self.device_map = (
|
1747 |
+
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
|
1748 |
+
if device_map is None
|
1749 |
+
else device_map
|
1750 |
+
)
|
1751 |
+
assert_device_map(self.device_map, len(self.encoder.block))
|
1752 |
+
self.encoder.parallelize(self.device_map)
|
1753 |
+
self.model_parallel = True
|
1754 |
+
|
1755 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1756 |
+
def deparallelize(self):
|
1757 |
+
self.encoder.deparallelize()
|
1758 |
+
self.encoder = self.encoder.to("cpu")
|
1759 |
+
self.model_parallel = False
|
1760 |
+
self.device_map = None
|
1761 |
+
torch.cuda.empty_cache()
|
1762 |
+
|
1763 |
+
def get_input_embeddings(self):
|
1764 |
+
return self.shared
|
1765 |
+
|
1766 |
+
def set_input_embeddings(self, new_embeddings):
|
1767 |
+
self.shared = new_embeddings
|
1768 |
+
self.encoder.set_input_embeddings(new_embeddings)
|
1769 |
+
|
1770 |
+
def get_encoder(self):
|
1771 |
+
return self.encoder
|
1772 |
+
|
1773 |
+
def _prune_heads(self, heads_to_prune):
|
1774 |
+
"""
|
1775 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
1776 |
+
class PreTrainedModel
|
1777 |
+
"""
|
1778 |
+
for layer, heads in heads_to_prune.items():
|
1779 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
1780 |
+
|
1781 |
+
@add_start_docstrings_to_model_forward(T5_ENCODER_INPUTS_DOCSTRING)
|
1782 |
+
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
|
1783 |
+
def forward(
|
1784 |
+
self,
|
1785 |
+
input_ids=None,
|
1786 |
+
attention_mask=None,
|
1787 |
+
head_mask=None,
|
1788 |
+
inputs_embeds=None,
|
1789 |
+
output_attentions=None,
|
1790 |
+
output_hidden_states=None,
|
1791 |
+
return_dict=None,
|
1792 |
+
):
|
1793 |
+
r"""
|
1794 |
+
Returns:
|
1795 |
+
|
1796 |
+
Example:
|
1797 |
+
|
1798 |
+
```python
|
1799 |
+
>>> from transformers import T5Tokenizer, T5EncoderModel
|
1800 |
+
|
1801 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-small")
|
1802 |
+
>>> model = T5EncoderModel.from_pretrained("t5-small")
|
1803 |
+
>>> input_ids = tokenizer(
|
1804 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1805 |
+
>>> ).input_ids # Batch size 1
|
1806 |
+
>>> outputs = model(input_ids=input_ids)
|
1807 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1808 |
+
```"""
|
1809 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1810 |
+
|
1811 |
+
encoder_outputs = self.encoder(
|
1812 |
+
input_ids=input_ids,
|
1813 |
+
attention_mask=attention_mask,
|
1814 |
+
inputs_embeds=inputs_embeds,
|
1815 |
+
head_mask=head_mask,
|
1816 |
+
output_attentions=output_attentions,
|
1817 |
+
output_hidden_states=output_hidden_states,
|
1818 |
+
return_dict=return_dict,
|
1819 |
+
)
|
1820 |
+
|
1821 |
+
return encoder_outputs
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e04b0874e38072331eb99efe6cdd4759268b8e516a23fce6bac21aa7687b1887
|
3 |
+
size 6845775809
|