File size: 1,865 Bytes
4549315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
tags:
- Safetensors
- text-generation-inference
- merge
- mistral
- 7b
- mistralai/Mistral-7B-Instruct-v0.2
- openchat/openchat-3.5-0106
- transformers
- safetensors
- mistral
- text-generation
- openchat
- C-RLFT
- arxiv:2309.11235
- arxiv:2303.08774
- base_model:mistralai/Mistral-7B-v0.1
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- has_space
- text-generation-inference
- region:us
---

# openchat-3.5-0106-Mistral-7B-Instruct-v0.2

openchat-3.5-0106-Mistral-7B-Instruct-v0.2 is a merge of the following models:
* [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)
* [openchat/openchat-3.5-0106](https://huggingface.co/openchat/openchat-3.5-0106)

## 🧩 Configuration

```yaml
slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.2
        layer_range: [0, 32]
      - model: openchat/openchat-3.5-0106
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
```


## 💻 Usage


```python
!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "MaziyarPanahi/openchat-3.5-0106-Mistral-7B-Instruct-v0.2"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```