Mazen Amria commited on
Commit
12f6e14
·
1 Parent(s): b64eac0

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -0
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - cifar100
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: swin-base-finetuned-cifar100
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: cifar100
17
+ type: cifar100
18
+ config: cifar100
19
+ split: train
20
+ args: cifar100
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.9201
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # swin-base-finetuned-cifar100
31
+
32
+ This model is a fine-tuned version of [microsoft/swin-base-patch4-window7-224](https://huggingface.co/microsoft/swin-base-patch4-window7-224) on the cifar100 dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Accuracy: 0.9201
35
+ - Loss: 0.3670
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 4e-05
55
+ - train_batch_size: 16
56
+ - eval_batch_size: 16
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 64
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 5
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Accuracy | Validation Loss |
68
+ |:-------------:|:-----:|:----:|:--------:|:---------------:|
69
+ | 0.3536 | 1.0 | 781 | 0.9052 | 0.3141 |
70
+ | 0.3254 | 2.0 | 1562 | 0.9117 | 0.2991 |
71
+ | 0.0936 | 3.0 | 2343 | 0.9138 | 0.3322 |
72
+ | 0.1054 | 4.0 | 3124 | 0.9158 | 0.3483 |
73
+ | 0.0269 | 5.0 | 3905 | 0.9201 | 0.3670 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.25.1
79
+ - Pytorch 1.13.0+cu116
80
+ - Datasets 2.8.0
81
+ - Tokenizers 0.13.2