File size: 7,248 Bytes
64e1c3a
 
 
 
 
 
 
 
 
ec29dda
 
 
 
64e1c3a
 
 
 
 
 
 
f0332cb
64e1c3a
dd1d00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0f40b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64e1c3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
---
base_model: HuggingFaceM4/Idefics3-8B-Llama3
library_name: peft
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: idefics3-llama-gui-dense-descriptions
  results: []
datasets:
- Agent-Eval-Refine/GUI-Dense-Descriptions
language:
- en
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# idefics3-llama-gui-dense-descriptions

This model is a fine-tuned version of [HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) on https://huggingface.co/datasets/Agent-Eval-Refine/GUI-Dense-Descriptions dataset

## Finetuning script

```python
# !pip install git+https://github.com/andimarafioti/transformers.git@e1b7c0a05ab65e4ddb62a407fe12f8ec13a916f0"
# !pip install accelerate datasets peft bitsandbytes
# !pip install flash-attn --no-build-isolation

import pandas as pd
import torch
from peft import LoraConfig, prepare_model_for_kbit_training, get_peft_model
from transformers import (
    AutoProcessor,
    BitsAndBytesConfig,
    Idefics3ForConditionalGeneration,
)
import os
from PIL import Image
from datasets import load_dataset
from transformers import TrainingArguments, Trainer
from huggingface_hub import notebook_login

notebook_login()

gui_dense_desc_dataset = load_dataset("Agent-Eval-Refine/GUI-Dense-Descriptions")
train_ds = gui_dense_desc_dataset["train"]

# os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
# os.environ["CUDA_VISIBLE_DEVICES"] = "2"

USE_LORA = False
USE_QLORA = True
model_id = "HuggingFaceM4/Idefics3-8B-Llama3"

processor = AutoProcessor.from_pretrained(model_id)

if USE_QLORA or USE_LORA:
    lora_config = LoraConfig(
        r=8,
        lora_alpha=8,
        lora_dropout=0.1,
        target_modules=[
            "down_proj",
            "o_proj",
            "k_proj",
            "q_proj",
            "gate_proj",
            "up_proj",
            "v_proj",
        ],
        use_dora=False if USE_QLORA else True,
        init_lora_weights="gaussian",
    )
    lora_config.inference_mode = False
    if USE_QLORA:
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.bfloat16,
        )

    model = Idefics3ForConditionalGeneration.from_pretrained(
        model_id,
        quantization_config=bnb_config if USE_QLORA else None,
        _attn_implementation="flash_attention_2",
        device_map="auto",
        torch_dtype=torch.bfloat16,
    )
    model.add_adapter(lora_config)
    model.enable_adapters()
    model = prepare_model_for_kbit_training(model)
    model = get_peft_model(model, lora_config)
    print(model.get_nb_trainable_parameters())
else:
    model = Idefics3ForConditionalGeneration.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        _attn_implementation="flash_attention_2",
        device_map="auto",
    )

    # if you'd like to only fine-tune LLM
    for param in model.model.vision_model.parameters():
        param.requires_grad = False

image_token_id = processor.tokenizer.additional_special_tokens_ids[
    processor.tokenizer.additional_special_tokens.index("<image>")
]


def collate_fn(examples):
    texts = []
    images = []
    for example in examples:
        image = example["image"]
        image_description = example["text"]
        messages = [
            {
                "role": "user",
                "content": [
                    {"type": "image"},
                    {
                        "type": "text",
                        "text": "Provide a detailed description of the image.",
                    },
                ],
            },
            {
                "role": "assistant",
                "content": [{"type": "text", "text": image_description}],
            },
        ]
        text = processor.apply_chat_template(messages, add_generation_prompt=False)
        texts.append(text.strip())
        images.append([image])

        batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
        labels = batch["input_ids"].clone()
        labels[labels == processor.tokenizer.pad_token_id] = -100
        labels[labels == image_token_id] = -100
        batch["labels"] = labels

    return batch

training_args = TrainingArguments(
    num_train_epochs=1,
    per_device_train_batch_size=2,
    gradient_accumulation_steps=8,
    warmup_steps=50,
    learning_rate=1e-4,
    weight_decay=0.01,
    logging_steps=5,
    save_strategy="steps",
    save_steps=250,
    save_total_limit=1,
    optim="adamw_torch",
    bf16=True,
    output_dir="./idefics3-llama-gui-dense-descriptions",
    hub_model_id="idefics3-llama-gui-dense-descriptions",
    remove_unused_columns=False,
)

trainer = Trainer(
    model=model,
    args=training_args,
    data_collator=collate_fn,
    train_dataset=train_ds,
)

trainer.train()

trainer.push_to_hub()

```

Training took approx. 40 min. on 2xH100 (80 Gb each) devices.

## Intended usage

```python
from peft import PeftModel
from transformers import AutoProcessor, Idefics3ForConditionalGeneration
from transformers.image_utils import load_image
import torch

adapter_path = "Maverick17/idefics3-llama-gui-dense-descriptions"
base_model_id = "HuggingFaceM4/Idefics3-8B-Llama3"

# Load Model base model
model = Idefics3ForConditionalGeneration.from_pretrained(
    base_model_id,
    _attn_implementation="flash_attention_2",
    device_map="auto",
    torch_dtype=torch.bfloat16,
)

# Merge LoRA and base model
peft_model = PeftModel.from_pretrained(model, adapter_path)
merged_model = peft_model.merge_and_unload()

processor = AutoProcessor.from_pretrained(base_model_id)

image = load_image("path/to/ui/image.png")

# Create inputs
messages = [
    {
        "role": "user",
        "content": [
            {"type": "image"},
            {
                "type": "text",
                "text": "Provide a detailed description of the image.",
            },
        ],
    },
]

prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image], return_tensors="pt")
inputs = {k: v.to("cuda") for k, v in inputs.items()}

generation_args = {
    "max_new_tokens": 1024,
    "repetition_penalty": 1,
}

generation_args["do_sample"] = False
generation_args.update(inputs)

# Generate
generated_ids = model.generate(**generation_args)

generated_texts = processor.batch_decode(
    generated_ids[:, generation_args["input_ids"].size(1) :], skip_special_tokens=True
)

print(generated_texts[0].strip())
```

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1

### Framework versions

- PEFT 0.13.0
- Transformers 4.44.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1