File size: 6,338 Bytes
6f70897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# IMPORTS

import pandas as pd
import nltk
nltk.download("punkt")
from nltk import tokenize
import time
from sklearn.model_selection import train_test_split
from transformers import BertConfig, BertTokenizer, TFBertModel
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow import convert_to_tensor
from tensorflow.keras.layers import Input, Dense
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.metrics import CategoricalAccuracy, Precision, Recall


# SET PARAMETERS

DATA_PATH="..."

SAVE_MODEL_TO=".../"


# READ DATA

tab=pd.read_hdf(DATA_PATH)


# PREPARE DATA FOR BERT

def data_to_values(dataframe):
    """Converts data to values.
    """
    abstracts=dataframe.Abstract.values
    labels=dataframe.Label.values
    return abstracts, labels
    

def tokenize_abstracts(abstracts):
    """For given texts, adds '[CLS]' and '[SEP]' tokens
    at the beginning and the end of each sentence, respectively.
    """
    t_abstracts=[]
    for abstract in abstracts:
        t_abstract="[CLS] "
        for sentence in tokenize.sent_tokenize(abstract):
            t_abstract=t_abstract + sentence + " [SEP] "
        t_abstracts.append(t_abstract)
    return t_abstracts


tokenizer=BertTokenizer.from_pretrained('bert-base-multilingual-uncased')


def b_tokenize_abstracts(t_abstracts, max_len=512):
    """Tokenizes sentences with the help
    of a 'bert-base-multilingual-uncased' tokenizer.
    """
    b_t_abstracts=[tokenizer.tokenize(_)[:max_len] for _ in t_abstracts]
    return b_t_abstracts


def convert_to_ids(b_t_abstracts):
    """Converts tokens to its specific
    IDs in a bert vocabulary.
    """
    input_ids=[tokenizer.convert_tokens_to_ids(_) for _ in b_t_abstracts]
    return input_ids


def abstracts_to_ids(abstracts):
    """Tokenizes abstracts and converts
    tokens to their specific IDs
    in a bert vocabulary.
    """
    tokenized_abstracts=tokenize_abstracts(abstracts)
    b_tokenized_abstracts=b_tokenize_abstracts(tokenized_abstracts)
    ids=convert_to_ids(b_tokenized_abstracts)
    return ids


def pad_ids(input_ids, max_len=512):
    """Padds sequences of a given IDs.
    """
    p_input_ids=pad_sequences(input_ids,
                                maxlen=max_len,
                                dtype="long",
                                truncating="post",
                                padding="post")
    return p_input_ids


def create_attention_masks(inputs):
    """Creates attention masks
    for a given seuquences.
    """
    masks=[]
    for sequence in inputs:
        sequence_mask=[float(_>0) for _ in sequence]
        masks.append(sequence_mask)
    return masks


# CREATE MODEL

def create_model():
    config=BertConfig.from_pretrained(
                                    "bert-base-multilingual-uncased",
                                    num_labels=16,
                                    hidden_dropout_prob=0.2,
                                    attention_probs_dropout_prob=0.2)
    bert=TFBertModel.from_pretrained(
                                    "bert-base-multilingual-uncased",
                                    config=config)
    bert_layer=bert.layers[0]
    input_ids_layer=Input(
                        shape=(512),
                        name="input_ids",
                        dtype="int32")
    input_attention_masks_layer=Input(
                                    shape=(512),
                                    name="attention_masks",
                                    dtype="int32")
    bert_model=bert_layer(
                        input_ids_layer,
                        input_attention_masks_layer)
    target_layer=Dense(
                    units=16,
                    kernel_initializer=TruncatedNormal(stddev=config.initializer_range),
                    name="target_layer",
                    activation="softmax")(bert_model[1])
    model=Model(
                inputs=[input_ids_layer, input_attention_masks_layer],
                outputs=target_layer,
                name="mbert_multiclass_16")
    optimizer=Adam(
                learning_rate=5e-05,
                epsilon=1e-08,
                decay=0.01,
                clipnorm=1.0)
    model.compile(
                optimizer=optimizer,
                loss="categorical_crossentropy", 
                metrics=[CategoricalAccuracy(), Precision(), Recall()])
    return model


abstracts, labels=data_to_values(tab)
ids=abstracts_to_ids(abstracts)
print("Abstracts tokenized, tokens converted to ids.")

padded_ids=pad_ids(ids)
print("Sequences padded.")

train_inputs, temp_inputs, train_labels, temp_labels=train_test_split(padded_ids, labels, random_state=1993, test_size=0.3)
validation_inputs, test_inputs, validation_labels, test_labels=train_test_split(temp_inputs, temp_labels, random_state=1993, test_size=0.5)
print("Data splited into train, validation, test sets.")

train_masks, validation_masks, test_masks=[create_attention_masks(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Attention masks created.")
train_inputs, validation_inputs, test_inputs=[convert_to_tensor(_) for _ in [train_inputs, validation_inputs, test_inputs]]
print("Inputs converted to tensors.")
train_labels, validation_labels, test_labels=[convert_to_tensor(_) for _ in [train_labels, validation_labels, test_labels]]
print("Labels converted to tensors.")
train_masks, validation_masks, test_masks=[convert_to_tensor(_) for _ in [train_masks, validation_masks, test_masks]]
print("Masks converted to tensors.")


model=create_model()
print("Model initialized.")


history=model.fit([train_inputs, train_masks], train_labels,
                        batch_size=8,
                        epochs=2,
                        validation_data=([validation_inputs, validation_masks], validation_labels))


model.save(SAVE_MODEL_TO+"mbert_multiclass_16.h5")
print("Model saved.")

test_score=model.evaluate([test_inputs, test_masks], test_labels,
                            batch_size=8)

print("Model tested.")


stats=pd.DataFrame(test_score, columns=["loss", "accuracy", "precision", "recall"])
stats.to_excel(SAVE_MODEL_TO+"mbert_multiclass_16_stats.xlsx", index=False)

print("Stats saved.")