--- library_name: peft license: apache-2.0 base_model: ibm-granite/granite-3.1-8b-instruct tags: - generated_from_trainer model-index: - name: granite-bfcl-plans-3.1-8b-lora results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.2` ```yaml base_model: ibm-granite/granite-3.1-8b-instruct model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer resize_token_embeddings_to_32x: true load_in_8bit: true load_in_4bit: false strict: false datasets: - path: bfcl_training_data.jsonl type: chat_template chat_template: tokenizer_default field_messages: conversations message_field_role: role message_field_content: value dataset_prepared_path: last_run_prepared_sft val_set_size: 0 sequence_len: 16384 sample_packing: false pad_to_sequence_len: true eval_sample_packing: false output_dir: granite-bfcl-plans-3.1-8b-lora wandb_project: null wandb_entity: null wandb_watch: null wandb_name: null wandb_log_model: null adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: gradient_accumulation_steps: 8 micro_batch_size: 1 eval_batch_size: 1 num_epochs: 7 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 1e-05 max_grad_norm: 1.0 logging_steps: 10 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: xformers_attention: flash_attention: true warmup_ratio: 0.05 eval_steps: save_strategy: epoch eval_table_size: num_processes: 8 deepspeed: weight_decay: 0.0 ```

# granite-bfcl-plans-3.1-8b-lora This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the bfcl_training_data.jsonl dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - total_eval_batch_size: 8 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 4 - num_epochs: 7 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.3.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3