File size: 3,378 Bytes
b12996b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
library_name: peft
license: apache-2.0
base_model: ibm-granite/granite-3.1-8b-instruct
tags:
- generated_from_trainer
model-index:
- name: home/ec2-user/SageMaker/task_decomposition/trained_models/granite-bfcl-plans-3.1-8b-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.5.2`
```yaml
base_model: ibm-granite/granite-3.1-8b-instruct
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

resize_token_embeddings_to_32x: true
load_in_8bit: true
load_in_4bit: false
strict: false

datasets:
- path: /home/ec2-user/SageMaker/task_decomposition/data/bfcl_training_data.jsonl
  type: chat_template
  chat_template: tokenizer_default
  field_messages: conversations
  message_field_role: role
  message_field_content: value
dataset_prepared_path: last_run_prepared_sft

val_set_size: 0
sequence_len: 16384
sample_packing: false
pad_to_sequence_len: true
eval_sample_packing: false
output_dir: /home/ec2-user/SageMaker/task_decomposition/trained_models/granite-bfcl-plans-3.1-8b-lora

wandb_project: null
wandb_entity: null
wandb_watch: null
wandb_name: null
wandb_log_model: null

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

gradient_accumulation_steps: 8
micro_batch_size: 1
eval_batch_size: 1
num_epochs: 7
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 1e-05

max_grad_norm: 1.0
logging_steps: 10

train_on_inputs: false
group_by_length: false

bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
xformers_attention:
flash_attention: true
warmup_ratio: 0.05
eval_steps:
save_strategy: epoch
eval_table_size:
num_processes: 8
deepspeed:
weight_decay: 0.0
```

</details><br>

# home/ec2-user/SageMaker/task_decomposition/trained_models/granite-bfcl-plans-3.1-8b-lora

This model is a fine-tuned version of [ibm-granite/granite-3.1-8b-instruct](https://huggingface.co/ibm-granite/granite-3.1-8b-instruct) on the /home/ec2-user/SageMaker/task_decomposition/data/bfcl_training_data.jsonl dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- total_eval_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 4
- num_epochs: 7

### Training results



### Framework versions

- PEFT 0.13.2
- Transformers 4.46.3
- Pytorch 2.3.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3