|
import torch |
|
from .constants import * |
|
from .conversation import conv_templates, SeparatorStyle |
|
from .model.builder import load_pretrained_model |
|
from .utils import disable_torch_init |
|
from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria |
|
from PIL import Image |
|
import os |
|
from decord import VideoReader, cpu |
|
import numpy as np |
|
|
|
|
|
class Chat: |
|
def __init__(self, model_path, conv_mode="simple", load_8bit=False, load_4bit=False): |
|
disable_torch_init() |
|
self.tokenizer, self.model, self.image_processor, context_len = load_pretrained_model(model_path, None, model_name="ChatUniVi", load_8bit=load_8bit, load_4bit=load_4bit) |
|
self.model.to("cuda:0") |
|
mm_use_im_start_end = getattr(self.model.config, "mm_use_im_start_end", False) |
|
mm_use_im_patch_token = getattr(self.model.config, "mm_use_im_patch_token", True) |
|
if mm_use_im_patch_token: |
|
self.tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: |
|
self.tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
self.model.resize_token_embeddings(len(self.tokenizer)) |
|
|
|
vision_tower = self.model.get_vision_tower() |
|
if not vision_tower.is_loaded: |
|
vision_tower.load_model() |
|
|
|
self.image_processor = vision_tower.image_processor |
|
self.conv_mode = conv_mode |
|
print(self.model) |
|
|
|
def get_prompt(self, qs, state): |
|
state.append_message(state.roles[0], qs) |
|
state.append_message(state.roles[1], None) |
|
return state |
|
|
|
def _get_rawvideo_dec(self, video_path, image_processor, max_frames=MAX_IMAGE_LENGTH, image_resolution=224, |
|
video_framerate=1, s=None, e=None): |
|
if s is None: |
|
start_time, end_time = None, None |
|
else: |
|
start_time = int(s) |
|
end_time = int(e) |
|
start_time = start_time if start_time >= 0. else 0. |
|
end_time = end_time if end_time >= 0. else 0. |
|
if start_time > end_time: |
|
start_time, end_time = end_time, start_time |
|
elif start_time == end_time: |
|
end_time = start_time + 1 |
|
|
|
if os.path.exists(video_path): |
|
vreader = VideoReader(video_path, ctx=cpu(0)) |
|
else: |
|
print(video_path) |
|
raise FileNotFoundError |
|
|
|
fps = vreader.get_avg_fps() |
|
f_start = 0 if start_time is None else int(start_time * fps) |
|
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1)) |
|
num_frames = f_end - f_start + 1 |
|
if num_frames > 0: |
|
sample_fps = int(video_framerate) |
|
t_stride = int(round(float(fps) / sample_fps)) |
|
|
|
all_pos = list(range(f_start, f_end + 1, t_stride)) |
|
if len(all_pos) > max_frames: |
|
sample_pos = [all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)] |
|
else: |
|
sample_pos = all_pos |
|
|
|
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()] |
|
return patch_images |
|
|
|
@torch.inference_mode() |
|
@spaces.GPU |
|
def generate(self, images_tensor: list, prompt: str, first_run: bool, state): |
|
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor |
|
|
|
state = self.get_prompt(prompt, state) |
|
prompt = state.get_prompt() |
|
print(prompt) |
|
|
|
images_tensor = torch.stack(images_tensor, dim=0) |
|
input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to("cuda:0") |
|
|
|
temperature = 0.2 |
|
max_new_tokens = 1024 |
|
|
|
stop_str = conv_templates[self.conv_mode].copy().sep if conv_templates[self.conv_mode].copy().sep_style != SeparatorStyle.TWO else \ |
|
conv_templates[self.conv_mode].copy().sep2 |
|
keywords = [stop_str] |
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) |
|
|
|
with torch.inference_mode(): |
|
output_ids = model.generate( |
|
input_ids, |
|
images=images_tensor, |
|
do_sample=True, |
|
temperature=temperature, |
|
num_beams=1, |
|
max_new_tokens=max_new_tokens, |
|
use_cache=True, |
|
stopping_criteria=[stopping_criteria]) |
|
|
|
input_token_len = input_ids.shape[1] |
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() |
|
if n_diff_input_output > 0: |
|
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') |
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] |
|
outputs = outputs.strip() |
|
if outputs.endswith(stop_str): |
|
outputs = outputs[:-len(stop_str)] |
|
outputs = outputs.strip() |
|
|
|
print('response', outputs) |
|
return outputs, state |
|
|
|
|
|
|
|
title_markdown = (""" |
|
<div style="display: flex; justify-content: center; align-items: center; text-align: center;"> |
|
<a href="https://github.com/PKU-YuanGroup/Chat-UniVi" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;"> |
|
<img src="https://z1.ax1x.com/2023/11/22/pidlXh4.jpg" alt="Chat-UniVi🚀" style="max-width: 120px; height: auto;"> |
|
</a> |
|
<div> |
|
<h1 >Chat-UniVi: Unified Visual Representation Empowers Large Language Models with Image and Video Understanding</h1> |
|
<h5 style="margin: 0;">If you like our project, please give us a star ✨ on Github for the latest update.</h5> |
|
</div> |
|
</div> |
|
<div align="center"> |
|
<div style="display:flex; gap: 0.25rem;" align="center"> |
|
<a href='https://github.com/PKU-YuanGroup/Chat-UniVi'><img src='https://img.shields.io/badge/Github-Code-blue'></a> |
|
<a href="https://arxiv.org/pdf/2311.08046.pdf"><img src="https://img.shields.io/badge/Arxiv-2311.08046-red"></a> |
|
<a href='https://github.com/PKU-YuanGroup/Chat-UniVi/stargazers'><img src='https://img.shields.io/github/stars/PKU-YuanGroup/Chat-UniVi.svg?style=social'></a> |
|
</div> |
|
</div> |
|
""") |
|
|
|
block_css = """ |
|
#buttons button { |
|
min-width: min(120px,100%); |
|
} |
|
""" |
|
|
|
|
|
tos_markdown = (""" |
|
### Terms of use |
|
By using this service, users are required to agree to the following terms: |
|
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. |
|
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. |
|
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. |
|
""") |
|
|
|
|
|
learn_more_markdown = (""" |
|
### License |
|
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. |
|
""") |