ManishThota commited on
Commit
e225609
ยท
verified ยท
1 Parent(s): ae6b4e7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -227
README.md CHANGED
@@ -7,232 +7,5 @@ license: apache-2.0
7
  <img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/>
8
  <p>
9
  <h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2>
10
- <h5 align="center"> If you like our project, please give us a star โญ on GitHub for latest update. </h2>
11
-
12
-
13
-
14
-
15
- ## ๐Ÿ“ฐ News
16
- * **[2024.01.27]** ๐Ÿ‘€๐Ÿ‘€๐Ÿ‘€ Our [MoE-LLaVA](https://github.com/PKU-YuanGroup/MoE-LLaVA) is released! A sparse model with 3B parameters outperformed the dense model with 7B parameters.
17
- * **[2024.01.17]** ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ Our [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) has been accepted at ICLR 2024!
18
- * **[2024.01.16]** ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ We reorganize the code and support LoRA fine-tuning, checking [finetune_lora.sh](scripts/v1_5/finetune_lora.sh).
19
- * **[2023.11.30]** ๐Ÿค Thanks to the generous contributions of the community, the [OpenXLab's demo](https://openxlab.org.cn/apps/detail/houshaowei/Video-LLaVA) is now accessible.
20
- * **[2023.11.23]** We are training a new and powerful model.
21
- * **[2023.11.21]** ๐Ÿค Check out the [replicate demo](https://replicate.com/nateraw/video-llava), created by [@nateraw](https://github.com/nateraw), who has generously supported our research!
22
- * **[2023.11.20]** ๐Ÿค— [Hugging Face demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) and **all codes & datasets** are available now! Welcome to **watch** ๐Ÿ‘€ this repository for the latest updates.
23
-
24
- ## ๐Ÿ˜ฎ Highlights
25
-
26
- Video-LLaVA exhibits remarkable interactive capabilities between images and videos, despite the absence of image-video pairs in the dataset.
27
-
28
- ### ๐Ÿ’ก Simple baseline, learning united visual representation by alignment before projection
29
- - With **the binding of unified visual representations to the language feature space**, we enable an LLM to perform visual reasoning capabilities on both images and videos simultaneously.
30
-
31
- ### ๐Ÿ”ฅ High performance, complementary learning with video and image
32
- - Extensive experiments demonstrate **the complementarity of modalities**, showcasing significant superiority when compared to models specifically designed for either images or videos.
33
-
34
-
35
- ## ๐Ÿค— Demo
36
-
37
- ### Gradio Web UI
38
-
39
- Highly recommend trying out our web demo by the following command, which incorporates all features currently supported by Video-LLaVA. We also provide [online demo](https://huggingface.co/spaces/LanguageBind/Video-LLaVA) in Huggingface Spaces.
40
- ```bash
41
- python -m videollava.serve.gradio_web_server
42
- ```
43
-
44
-
45
-
46
- ### CLI Inference
47
-
48
- ```bash
49
- python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/video.mp4" --load-4bit
50
- ```
51
-
52
- ```bash
53
- python -m videollava.serve.cli --model-path "LanguageBind/Video-LLaVA-7B" --file "path/to/your/image.jpg" --load-4bit
54
- ```
55
-
56
-
57
-
58
- ## ๐Ÿ› ๏ธ Requirements and Installation
59
- * Python >= 3.10
60
- * Pytorch == 2.0.1
61
- * CUDA Version >= 11.7
62
- * Install required packages:
63
- ```bash
64
- git clone https://github.com/PKU-YuanGroup/Video-LLaVA
65
- cd Video-LLaVA
66
- conda create -n videollava python=3.10 -y
67
- conda activate videollava
68
- pip install --upgrade pip # enable PEP 660 support
69
- pip install -e .
70
- pip install -e ".[train]"
71
- pip install flash-attn --no-build-isolation
72
- pip install decord opencv-python git+https://github.com/facebookresearch/pytorchvideo.git@28fe037d212663c6a24f373b94cc5d478c8c1a1d
73
- ```
74
-
75
- ## ๐Ÿค– API
76
- **We open source all codes.** If you want to load the model (e.g. ```LanguageBind/Video-LLaVA-7B```) on local, you can use the following code snippets.
77
-
78
- ### Inference for image
79
- ```python
80
- import torch
81
- from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
82
- from videollava.conversation import conv_templates, SeparatorStyle
83
- from videollava.model.builder import load_pretrained_model
84
- from videollava.utils import disable_torch_init
85
- from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
86
-
87
- def main():
88
- disable_torch_init()
89
- image = 'videollava/serve/examples/extreme_ironing.jpg'
90
- inp = 'What is unusual about this image?'
91
- model_path = 'LanguageBind/Video-LLaVA-7B'
92
- cache_dir = 'cache_dir'
93
- device = 'cuda'
94
- load_4bit, load_8bit = True, False
95
- model_name = get_model_name_from_path(model_path)
96
- tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
97
- image_processor = processor['image']
98
- conv_mode = "llava_v1"
99
- conv = conv_templates[conv_mode].copy()
100
- roles = conv.roles
101
-
102
- image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
103
- if type(image_tensor) is list:
104
- tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor]
105
- else:
106
- tensor = image_tensor.to(model.device, dtype=torch.float16)
107
-
108
- print(f"{roles[1]}: {inp}")
109
- inp = DEFAULT_IMAGE_TOKEN + '\n' + inp
110
- conv.append_message(conv.roles[0], inp)
111
- conv.append_message(conv.roles[1], None)
112
- prompt = conv.get_prompt()
113
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
114
- stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
115
- keywords = [stop_str]
116
- stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
117
-
118
- with torch.inference_mode():
119
- output_ids = model.generate(
120
- input_ids,
121
- images=tensor,
122
- do_sample=True,
123
- temperature=0.2,
124
- max_new_tokens=1024,
125
- use_cache=True,
126
- stopping_criteria=[stopping_criteria])
127
-
128
- outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
129
- print(outputs)
130
-
131
- if __name__ == '__main__':
132
- main()
133
- ```
134
-
135
- ### Inference for video
136
- ```python
137
- import torch
138
- from videollava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
139
- from videollava.conversation import conv_templates, SeparatorStyle
140
- from videollava.model.builder import load_pretrained_model
141
- from videollava.utils import disable_torch_init
142
- from videollava.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria
143
-
144
- def main():
145
- disable_torch_init()
146
- video = 'videollava/serve/examples/sample_demo_1.mp4'
147
- inp = 'Why is this video funny?'
148
- model_path = 'LanguageBind/Video-LLaVA-7B'
149
- cache_dir = 'cache_dir'
150
- device = 'cuda'
151
- load_4bit, load_8bit = True, False
152
- model_name = get_model_name_from_path(model_path)
153
- tokenizer, model, processor, _ = load_pretrained_model(model_path, None, model_name, load_8bit, load_4bit, device=device, cache_dir=cache_dir)
154
- video_processor = processor['video']
155
- conv_mode = "llava_v1"
156
- conv = conv_templates[conv_mode].copy()
157
- roles = conv.roles
158
-
159
- video_tensor = video_processor(video, return_tensors='pt')['pixel_values']
160
- if type(video_tensor) is list:
161
- tensor = [video.to(model.device, dtype=torch.float16) for video in video_tensor]
162
- else:
163
- tensor = video_tensor.to(model.device, dtype=torch.float16)
164
-
165
- print(f"{roles[1]}: {inp}")
166
- inp = ' '.join([DEFAULT_IMAGE_TOKEN] * model.get_video_tower().config.num_frames) + '\n' + inp
167
- conv.append_message(conv.roles[0], inp)
168
- conv.append_message(conv.roles[1], None)
169
- prompt = conv.get_prompt()
170
- input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda()
171
- stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
172
- keywords = [stop_str]
173
- stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
174
-
175
- with torch.inference_mode():
176
- output_ids = model.generate(
177
- input_ids,
178
- images=tensor,
179
- do_sample=True,
180
- temperature=0.1,
181
- max_new_tokens=1024,
182
- use_cache=True,
183
- stopping_criteria=[stopping_criteria])
184
-
185
- outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip()
186
- print(outputs)
187
-
188
- if __name__ == '__main__':
189
- main()
190
- ```
191
-
192
- ## ๐Ÿ—๏ธ Training & Validating
193
- The training & validating instruction is in [TRAIN_AND_VALIDATE.md](TRAIN_AND_VALIDATE.md).
194
-
195
- ## ๐Ÿ‘ Acknowledgement
196
- * [LLaVA](https://github.com/haotian-liu/LLaVA) The codebase we built upon and it is an efficient large language and vision assistant.
197
- * [Video-ChatGPT](https://github.com/mbzuai-oryx/Video-ChatGPT) Great job contributing the evaluation code and dataset.
198
-
199
- ## ๐Ÿ™Œ Related Projects
200
- * [LanguageBind](https://github.com/PKU-YuanGroup/LanguageBind) An open source five modalities language-based retrieval framework.
201
- * [Chat-UniVi](https://github.com/PKU-YuanGroup/Chat-UniVi) This framework empowers the model to efficiently utilize a limited number of visual tokens.
202
-
203
- ## ๐Ÿ”’ License
204
- * The majority of this project is released under the Apache 2.0 license as found in the [LICENSE](https://github.com/PKU-YuanGroup/Video-LLaVA/blob/main/LICENSE) file.
205
- * The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
206
-
207
- ## โœ๏ธ Citation
208
- If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
209
-
210
- ```BibTeX
211
- @article{lin2023video,
212
- title={Video-LLaVA: Learning United Visual Representation by Alignment Before Projection},
213
- author={Lin, Bin and Zhu, Bin and Ye, Yang and Ning, Munan and Jin, Peng and Yuan, Li},
214
- journal={arXiv preprint arXiv:2311.10122},
215
- year={2023}
216
- }
217
- ```
218
-
219
- ```BibTeX
220
- @article{zhu2023languagebind,
221
- title={LanguageBind: Extending Video-Language Pretraining to N-modality by Language-based Semantic Alignment},
222
- author={Zhu, Bin and Lin, Bin and Ning, Munan and Yan, Yang and Cui, Jiaxi and Wang, HongFa and Pang, Yatian and Jiang, Wenhao and Zhang, Junwu and Li, Zongwei and others},
223
- journal={arXiv preprint arXiv:2310.01852},
224
- year={2023}
225
- }
226
- ```
227
-
228
- <!---->
229
- ## โœจ Star History
230
- [![Star History](https://api.star-history.com/svg?repos=PKU-YuanGroup/Video-LLaVA&type=Date)](https://star-history.com/#PKU-YuanGroup/Video-LLaVA&Date)
231
-
232
- ## ๐Ÿค Contributors
233
-
234
- <a href="https://github.com/PKU-YuanGroup/Video-LLaVA/graphs/contributors">
235
- <img src="https://contrib.rocks/image?repo=PKU-YuanGroup/Video-LLaVA" />
236
- </a>
237
 
238
 
 
7
  <img src="https://z1.ax1x.com/2023/11/07/pil4sqH.png" width="150" style="margin-bottom: 0.2;"/>
8
  <p>
9
  <h2 align="center"> <a href="https://arxiv.org/abs/2311.10122">Video-LLaVA: Learning United Visual Representation by Alignment Before Projection</a></h2>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11