Mandur commited on
Commit
bf75069
·
1 Parent(s): 2228e7f

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - conll2003
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: distilbert-base-uncased-finetuned-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: conll2003
20
+ type: conll2003
21
+ config: conll2003
22
+ split: validation
23
+ args: conll2003
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.9284131205673759
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.9372413021590782
31
+ - name: F1
32
+ type: f1
33
+ value: 0.932806324110672
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9839388692074285
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # distilbert-base-uncased-finetuned-ner
43
+
44
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.0616
47
+ - Precision: 0.9284
48
+ - Recall: 0.9372
49
+ - F1: 0.9328
50
+ - Accuracy: 0.9839
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 16
71
+ - eval_batch_size: 16
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | 0.2442 | 1.0 | 878 | 0.0704 | 0.9151 | 0.9211 | 0.9181 | 0.9812 |
82
+ | 0.054 | 2.0 | 1756 | 0.0621 | 0.9239 | 0.9346 | 0.9292 | 0.9830 |
83
+ | 0.0297 | 3.0 | 2634 | 0.0616 | 0.9284 | 0.9372 | 0.9328 | 0.9839 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.28.0
89
+ - Pytorch 2.0.1+cu118
90
+ - Datasets 2.12.0
91
+ - Tokenizers 0.13.3