Porjaz commited on
Commit
02e0324
·
verified ·
1 Parent(s): 4b65bb8

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -1
README.md CHANGED
@@ -31,6 +31,28 @@ In training of the model, we used the following data sources:
31
  5. Macedonian version of the Mozilla Common Voice (version 18).
32
 
33
 
 
 
 
 
34
  ## Usage
35
 
36
- When using this model, make sure that your speech input is sampled at 16kHz.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  5. Macedonian version of the Mozilla Common Voice (version 18).
32
 
33
 
34
+ ## Model description
35
+
36
+ This model is an attention-based encoder-decoder (AED). The encoder is a Wav2vec2 model and the decoder is RNN-based.
37
+
38
  ## Usage
39
 
40
+ The model is developed using the [SpeechBrain] (https://speechbrain.github.io) toolkit. To use it, you need to install SpeechBrain with:
41
+ ```
42
+ pip install speechbrain
43
+ ```
44
+ SpeechBrain relies on the Transformers library, therefore you need install that library as well with:
45
+ ```
46
+ pip install transformers```
47
+
48
+ An external `py_module_file=custom_interface.py` is used as an external Predictor class into this HF repos. We use `foreign_class` function from `speechbrain.pretrained.interfaces` that allow you to load you custom model.
49
+
50
+ ```python
51
+ from speechbrain.inference.interfaces import foreign_class
52
+ classifier_test = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface.py", classname="ASR")
53
+ classifier_test = classifier_test.to(device)
54
+ predictions = classifier_test.classify_file("/m/triton/scratch/elec/t405-puhe/p/porjazd1/macedonian_asr/data/youtube_audio/audio/vesti_2.m4a", device)
55
+ print(predictions)
56
+ ```
57
+
58
+