--- license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-finetuned-ner-microsoft-disaster-cleaned results: [] --- [Visualize in Weights & Biases](https://wandb.ai/akku/huggingface/runs/bxmx75hr) # deberta-finetuned-ner-microsoft-disaster-cleaned This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0791 - Precision: 0.9251 - Recall: 0.9335 - F1: 0.9292 - Accuracy: 0.9808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0908 | 1.0 | 1799 | 0.0765 | 0.9134 | 0.9236 | 0.9185 | 0.9798 | | 0.0668 | 2.0 | 3598 | 0.0735 | 0.9284 | 0.9305 | 0.9295 | 0.9813 | | 0.0515 | 3.0 | 5397 | 0.0756 | 0.9231 | 0.9315 | 0.9273 | 0.9804 | | 0.0394 | 4.0 | 7196 | 0.0791 | 0.9251 | 0.9335 | 0.9292 | 0.9808 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1