--- library_name: peft license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-lora-food101 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/jalitv77-ml/lora_transformers/runs/62dlprwk) # vit-base-patch16-224-in21k-finetuned-lora-food101 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5267 - Accuracy: 0.8573 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 512 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 1.0269 | 0.9958 | 118 | 0.6697 | 0.8207 | | 0.9299 | 2.0 | 237 | 0.5993 | 0.8387 | | 0.6699 | 2.9958 | 355 | 0.5610 | 0.8473 | | 0.6616 | 4.0 | 474 | 0.5421 | 0.8543 | | 0.5378 | 4.9789 | 590 | 0.5267 | 0.8573 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.3 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3