File size: 1,580 Bytes
f23a498 ca1adea f23a498 ead69eb ca1adea f23a498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- DDPO
inference: true
---
# Aligned Diffusion Model via DDPO
Diffusion model aligned with the following reward models and Denoising Diffusion Policy Optimization (DDPO) algorithm
```
close-sourced vlm: claude3-opus gpt-4o gpt-4v
```
## How to Use
You can load the model and perform inference as follows:
```python
from diffusers import StableDiffusionPipeline, UNet2DConditionModel
pretrained_model_name = "runwayml/stable-diffusion-v1-5"
pipeline = StableDiffusionPipeline.from_pretrained(pretrained_model_name, torch_dtype=torch.float16)
lora_path = os.path.join(""path/to/checkpoint"")
pipeline.sd_pipeline.load_lora_weights(lora_path)
pipeline.sd_pipeline.to("cuda")
generator = torch.Generator(device='cuda')
generator = generator.manual_seed(1)
prompt = "a pink flower"
image = pipeline(prompt=prompt, generator=generator, guidance_scale=5).images[0]
```
## Citation
```
@misc{chen2024mjbenchmultimodalrewardmodel,
title={MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge for Text-to-Image Generation?},
author={Zhaorun Chen and Yichao Du and Zichen Wen and Yiyang Zhou and Chenhang Cui and Zhenzhen Weng and Haoqin Tu and Chaoqi Wang and Zhengwei Tong and Qinglan Huang and Canyu Chen and Qinghao Ye and Zhihong Zhu and Yuqing Zhang and Jiawei Zhou and Zhuokai Zhao and Rafael Rafailov and Chelsea Finn and Huaxiu Yao},
year={2024},
eprint={2407.04842},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.04842},
}
``` |