File size: 2,280 Bytes
8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 8974656 d743e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
---
# MISHANM/Manipuri_text_generation_Llama3_8B_instruct
This model is fine-tuned for the Manipuri language, capable of answering queries and translating text Between English and Manipuri. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
## Model Details
1. Language: Manipuri
2. Tasks: Question Answering, Translation (English to Manipuri )
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct
# Training Details
The model is trained on approx 3K instruction samples.
1. GPUs: 2*AMD Instinct™ MI210 Accelerators
## Inference with HuggingFace
```python3
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Manipuri_text_generation_Llama3_8B_instruct"
model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_path)
# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
# Format the prompt according to the chat template
messages = [
{
"role": "system",
"content": "You are a Manipuri language expert and linguist, with same knowledge give response in Manipuri language.",
},
{"role": "user", "content": prompt}
]
# Apply the chat template
formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
# Tokenize and generate output
inputs = tokenizer(formatted_prompt, return_tensors="pt")
output = model.generate( # Use model.module for DataParallel
**inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
)
return tokenizer.decode(output[0], skip_special_tokens=True)
# Example usage
prompt = """What is LLM ."""
translated_text = generate_text(prompt)
print(translated_text)
```
## Citation Information
```
@misc{MISHANM/Manipuri_text_generation_Llama3_8B_instruct,
author = {Mishan Maurya},
title = {Introducing Fine Tuned LLM for Manipuri Language},
year = {2024},
publisher = {Hugging Face},
journal = {Hugging Face repository},
}
```
- PEFT 0.12.0 |