MISHANM commited on
Commit
417e729
·
verified ·
1 Parent(s): f9dd24f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -171
README.md CHANGED
@@ -1,199 +1,92 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
10
 
11
 
12
  ## Model Details
 
 
 
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
 
 
 
 
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
 
 
 
 
 
 
 
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
 
 
 
 
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
57
 
58
- ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ base_model: meta-llama/Meta-Llama-3-8B-Instruct
3
+ library_name: peft
4
  ---
5
 
6
+ # MISHANM/German_text_generation_Llama3_8B_instruction
7
 
8
+ This model is fine-tuned for the German language, capable of answering queries and translating text Between English and German. It leverages advanced natural language processing techniques to provide accurate and context-aware responses.
9
 
10
 
11
 
12
  ## Model Details
13
+ 1. Language: German
14
+ 2. Tasks: Question Answering, Translation (English to German)
15
+ 3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct
16
 
 
17
 
 
18
 
19
+ # Training Details
20
 
21
+ The model is trained on approx 10K instruction samples.
22
+ 1. GPUs: 4*AMD Radeon™ PRO V620
23
+
24
+
 
 
 
25
 
 
26
 
27
+ ## Inference with HuggingFace
28
+ ```python3
29
+
30
+ import torch
31
+ from transformers import AutoModelForCausalLM, AutoTokenizer
32
 
33
+ # Set the device
34
+ device = "cuda" if torch.cuda.is_available() else "cpu"
 
35
 
36
+ # Load the fine-tuned model and tokenizer
37
+ model_path = "MISHANM/German_text_generation_Llama3_8B_instruction"
38
+ model = AutoModelForCausalLM.from_pretrained(model_path)
39
 
40
+ # Wrap the model with DataParallel if multiple GPUs are available
41
+ if torch.cuda.device_count() > 1:
42
+ print(f"Using {torch.cuda.device_count()} GPUs")
43
+ model = torch.nn.DataParallel(model)
44
 
45
+ # Move the model to the appropriate device
46
+ model.to(device)
47
 
48
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
49
 
50
+ # Function to generate text
51
+ def generate_text(prompt, max_length=1000, temperature=0.9):
52
+ # Format the prompt according to the chat template
53
+ messages = [
54
+ {
55
+ "role": "system",
56
+ "content": "You are a German language expert and linguist, with same knowledge give answers in German language. ",
57
+ },
58
+ {"role": "user", "content": prompt}
59
+ ]
60
 
61
+ # Apply the chat template
62
+ formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"
63
 
64
+ # Tokenize and generate output
65
+ inputs = tokenizer(formatted_prompt, return_tensors="pt").to(device)
66
+ output = model.module.generate( # Use model.module for DataParallel
67
+ **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
68
+ )
69
+ return tokenizer.decode(output[0], skip_special_tokens=True)
70
 
71
+ # Example usage
72
+ prompt = """Write a short note on NLP."""
73
+ translated_text = generate_text(prompt)
74
+ print(translated_text)
75
 
 
76
 
77
+ ```
78
 
79
+ ## Citation Information
80
+ ```
81
+ @misc{MISHANM/German_text_generation_Llama3_8B_instruction,
82
+ author = {Mishan Maurya},
83
+ title = {Introducing Fine Tuned LLM for German Language},
84
+ year = {2024},
85
+ publisher = {Hugging Face},
86
+ journal = {Hugging Face repository},
87
+
88
+ }
89
+ ```
90
 
 
91
 
92
+ - PEFT 0.12.0