File size: 2,275 Bytes
a6c3ae5
d8134c3
 
682f7c2
 
a6c3ae5
 
d8134c3
a6c3ae5
d8134c3
a6c3ae5
 
 
 
d8134c3
 
 
a6c3ae5
 
 
d8134c3
a6c3ae5
d8134c3
 
 
 
a6c3ae5
 
d8134c3
 
 
 
 
a6c3ae5
d8134c3
 
a6c3ae5
d8134c3
a6c3ae5
d8134c3
a6c3ae5
d8134c3
 
 
 
 
 
 
 
 
 
a6c3ae5
d8134c3
 
a6c3ae5
d8134c3
 
120c6b1
d8134c3
 
 
a6c3ae5
d8134c3
 
 
 
a6c3ae5
 
 
d8134c3
a6c3ae5
d8134c3
 
 
 
 
 
 
 
 
 
 
a6c3ae5
 
d8134c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
base_model: meta-llama/Meta-Llama-3-8B-Instruct
library_name: peft
datasets:
- saillab/alpaca-dogri-cleaned
---

# MISHANM/Dogri_text_generation_Llama3_8B_instruct

This model is fine-tuned for the Dogri language, capable of answering queries and translating text Between English and Dogri . It leverages advanced natural language processing techniques to provide accurate and context-aware responses.



## Model Details
1. Language: Dogri
2. Tasks: Question Answering(Dogri to Dogri) , Translation (English to Dogri )
3. Base Model: meta-llama/Meta-Llama-3-8B-Instruct



# Training Details

The model is trained on approx 52K instruction samples.
1. GPUs: 2*AMD Instinct™ MI210 Accelerators 
  
   


 ## Inference with HuggingFace
 ```python3
 
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load the fine-tuned model and tokenizer
model_path = "MISHANM/Dogri_text_generation_Llama3_8B_instruct"

model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto")

tokenizer = AutoTokenizer.from_pretrained(model_path)

# Function to generate text
def generate_text(prompt, max_length=1000, temperature=0.9):
    # Format the prompt according to the chat template
    messages = [
        {
            "role": "system",
            "content": "You are a Dogri language expert and linguist, with same knowledge give response in Dogri language.",
        },
        {"role": "user", "content": prompt}
    ]

    # Apply the chat template
    formatted_prompt = f"<|system|>{messages[0]['content']}<|user|>{messages[1]['content']}<|assistant|>"

    # Tokenize and generate output
    inputs = tokenizer(formatted_prompt, return_tensors="pt")
    output = model.generate(  
        **inputs, max_new_tokens=max_length, temperature=temperature, do_sample=True
    )
    return tokenizer.decode(output[0], skip_special_tokens=True)

# Example usage
prompt = """What is LLM ."""
translated_text = generate_text(prompt)
print(translated_text)



```

## Citation Information
```
@misc{MISHANM/Dogri_text_generation_Llama3_8B_instruct,
  author = {Mishan Maurya},
  title = {Introducing Fine Tuned LLM for Dogri Language},
  year = {2024},
  publisher = {Hugging Face},
  journal = {Hugging Face repository},
  
}
```


- PEFT 0.12.0