--- library_name: transformers tags: [] --- # MERaLiON MERaLiON-AudioLLM is a Speech-Text Large Language Model tailored for Singapore’s multilingual and multicultural landscape. Integrating a localised Whisper-Large-V3 and SEA-LIONv3, MERaLiON-AudioLLM is finetuned on **260,000 hours of speech and audio data**, **8 various tasks**, to address the diverse linguistic nuances of Singapore local accents and dialects. MERaLiON stands for Multimodal Empathetic Reasoning and Learning in One Network. - **Developed by:** I2R, A\*STAR - **Funded by [optional]:** Singapore NRF - **Model type:** MultiModal LLM - **Language(s) (Speech):** English (general & Singapore) - **Language(s) (NLP):** English, Chinese, Vietnamese, Indonesian, Thai, Filipino, Tamil, Malay, Khmer, Lao, Burmese, Javanese, Sundanese - **License:** MIT For more details, please refer to our [report](). ## Model Details ### Model Description ## Uses ### Direct Use ```python from datasets import load_dataset from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor repo_id = "MERaLiON/AudioLLM" processor = AutoProcessor.from_pretrained( repo_id, trust_remote_code=True, ) model = AutoModelForSpeechSeq2Seq.from_pretrained( repo_id, use_safetensors=True, trust_remote_code=True, ) prompt = "Can you please turn this audio into text format?" conversation = [ { "role": "user", "content": f"Given the following audio context: \n\nText instruction: {prompt}" } ] chat_prompt = processor.tokenizer.apply_chat_template( conversation=conversation, tokenize=False, add_generation_prompt=True ) libri_data = load_dataset("distil-whisper/librispeech_long", "clean", split="validation") audio_array = libri_data[0]["audio"]["array"] inputs = processor(text=chat_prompt, audios=audio_array, time_duration_limit=20) outputs = model.generate(**inputs, max_new_tokens=128) print(processor.decode(outputs[0, inputs['input_ids'].size(1):], skip_special_tokens=True)) ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]