|
"""PyTorch MERaLiON AudioLLM model.""" |
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import EncoderDecoderCache, StaticCache, HybridCache |
|
from transformers.generation import GenerationMixin |
|
from transformers.modeling_outputs import ModelOutput, BaseModelOutput |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_flash_attn_2_available, |
|
is_flash_attn_greater_or_equal_2_10, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
|
|
from .configuration_meralion import MERaLiONConfig, MERaLiONSpeechConfig |
|
from .modeling_text_decoder import MERaLiONTextForCausalLM |
|
|
|
|
|
if is_flash_attn_2_available(): |
|
from transformers.modeling_flash_attention_utils import _flash_attention_forward |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "MERaLiONConfig" |
|
|
|
|
|
def sinusoids(length: int, channels: int, max_timescale: float = 10000) -> torch.Tensor: |
|
"""Returns sinusoids for positional embedding""" |
|
if channels % 2 != 0: |
|
raise ValueError( |
|
f"Number of channels has to be divisible by 2 for sinusoidal positional embeddings, got {channels} channels." |
|
) |
|
log_timescale_increment = math.log(max_timescale) / (channels // 2 - 1) |
|
inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2)) |
|
scaled_time = torch.arange(length).view(-1, 1) * inv_timescales.view(1, -1) |
|
return torch.cat([scaled_time.sin(), scaled_time.cos()], dim=1) |
|
|
|
|
|
|
|
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int): |
|
""" |
|
Shift input ids one token to the right. |
|
""" |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone() |
|
shifted_input_ids[:, 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
|
|
def _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask: torch.Tensor, |
|
sequence_length: int, |
|
target_length: int, |
|
dtype: torch.dtype, |
|
device: torch.device, |
|
min_dtype: float, |
|
cache_position: torch.Tensor, |
|
batch_size: int, |
|
): |
|
""" |
|
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape |
|
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. |
|
|
|
Args: |
|
attention_mask (`torch.Tensor`): |
|
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. |
|
sequence_length (`int`): |
|
The sequence length being processed. |
|
target_length (`int`): |
|
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. |
|
dtype (`torch.dtype`): |
|
The dtype to use for the 4D attention mask. |
|
device (`torch.device`): |
|
The device to plcae the 4D attention mask on. |
|
min_dtype (`float`): |
|
The minimum value representable with the dtype `dtype`. |
|
cache_position (`torch.Tensor`): |
|
Indices depicting the position of the input sequence tokens in the sequence. |
|
batch_size (`torch.Tensor`): |
|
Batch size. |
|
""" |
|
if attention_mask is not None and attention_mask.dim() == 4: |
|
|
|
causal_mask = attention_mask |
|
else: |
|
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device) |
|
if sequence_length != 1: |
|
causal_mask = torch.triu(causal_mask, diagonal=1) |
|
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1) |
|
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) |
|
if attention_mask is not None: |
|
causal_mask = causal_mask.clone() |
|
mask_length = attention_mask.shape[-1] |
|
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :] |
|
padding_mask = padding_mask == 0 |
|
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( |
|
padding_mask, min_dtype |
|
) |
|
return causal_mask |
|
|
|
|
|
class MERaLiONSpeechAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
num_heads: int, |
|
dropout: float = 0.0, |
|
is_decoder: bool = False, |
|
bias: bool = True, |
|
is_causal: bool = False, |
|
layer_idx: Optional[int] = None, |
|
config: Optional[MERaLiONSpeechConfig] = None, |
|
): |
|
super().__init__() |
|
self.embed_dim = embed_dim |
|
self.num_heads = num_heads |
|
self.dropout = dropout |
|
self.head_dim = embed_dim // num_heads |
|
self.config = config |
|
|
|
if (self.head_dim * num_heads) != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" |
|
f" and `num_heads`: {num_heads})." |
|
) |
|
self.scaling = self.head_dim**-0.5 |
|
self.is_decoder = is_decoder |
|
self.is_causal = is_causal |
|
|
|
if layer_idx is None and is_decoder: |
|
logger.warning_once( |
|
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " |
|
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " |
|
"when creating this class." |
|
) |
|
self.layer_idx = layer_idx |
|
|
|
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=False) |
|
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) |
|
|
|
|
|
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): |
|
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self._shape(self.q_proj(hidden_states) * self.scaling, tgt_len, bsz) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) |
|
|
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
|
|
if layer_head_mask is not None: |
|
if layer_head_mask.size() != (self.num_heads,): |
|
raise ValueError( |
|
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" |
|
f" {layer_head_mask.size()}" |
|
) |
|
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights |
|
|
|
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) |
|
attn_output = torch.matmul(attn_probs, value_states) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MERaLiONSpeechFlashAttention2(MERaLiONSpeechAttention): |
|
""" |
|
MERaLiONSpeech flash attention module. This module inherits from `MERaLiONSpeechAttention` as the weights of the module stays |
|
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of |
|
flash attention and deal with padding tokens in case the input contains any of them. |
|
""" |
|
|
|
|
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
|
|
|
|
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
if isinstance(past_key_value, StaticCache): |
|
raise ValueError( |
|
"The `static` cache implementation is not compatible with `attn_implementation='flash_attention_2'`. " |
|
"Use `attn_implementation='sdpa'` in the meantime, and open an issue at https://github.com/huggingface/transformers" |
|
) |
|
|
|
if output_attentions: |
|
raise ValueError("SpeechFlashAttention2 attention does not support output_attentions") |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = torch.reshape(self.q_proj(hidden_states), (bsz, tgt_len, self.num_heads, self.head_dim)) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
|
|
|
|
key_states = key_states.transpose(1, 2) |
|
value_states = value_states.transpose(1, 2) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dtype = query_states.dtype |
|
if input_dtype == torch.float32: |
|
if torch.is_autocast_enabled(): |
|
target_dtype = torch.get_autocast_gpu_dtype() |
|
|
|
elif hasattr(self.config, "_pre_quantization_dtype"): |
|
target_dtype = self.config._pre_quantization_dtype |
|
else: |
|
target_dtype = self.q_proj.weight.dtype |
|
|
|
logger.warning_once( |
|
f"The input hidden states seems to be silently casted in float32, this might be related to" |
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" |
|
f" {target_dtype}." |
|
) |
|
|
|
query_states = query_states.to(target_dtype) |
|
key_states = key_states.to(target_dtype) |
|
value_states = value_states.to(target_dtype) |
|
|
|
attn_output = _flash_attention_forward( |
|
query_states, |
|
key_states, |
|
value_states, |
|
causal_mask, |
|
tgt_len, |
|
dropout=self.dropout if self.training else 0.0, |
|
is_causal=self.is_causal, |
|
use_top_left_mask=self._flash_attn_uses_top_left_mask, |
|
) |
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, -1) |
|
attn_output = self.out_proj(attn_output) |
|
|
|
if not output_attentions: |
|
attn_weights = None |
|
|
|
return attn_output, attn_weights, past_key_value |
|
|
|
|
|
class MERaLiONSpeechSdpaAttention(MERaLiONSpeechAttention): |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
key_value_states: Optional[torch.Tensor] = None, |
|
past_key_value: Optional[EncoderDecoderCache] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
layer_head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: |
|
"""Input shape: Batch x Time x Channel""" |
|
if output_attentions or layer_head_mask is not None: |
|
|
|
logger.warning_once( |
|
"MERaLiONSpeechModel is using MERaLiONSpeechSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention" |
|
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' |
|
) |
|
return super().forward( |
|
hidden_states, |
|
key_value_states=key_value_states, |
|
past_key_value=past_key_value, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
cache_position=cache_position, |
|
) |
|
|
|
|
|
|
|
is_cross_attention = key_value_states is not None |
|
bsz, tgt_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self._shape(self.q_proj(hidden_states), tgt_len, bsz) |
|
|
|
if past_key_value is not None: |
|
is_updated = past_key_value.is_updated.get(self.layer_idx) |
|
if is_cross_attention: |
|
|
|
past_key_value.is_updated[self.layer_idx] = True |
|
past_key_value = past_key_value.cross_attention_cache |
|
else: |
|
past_key_value = past_key_value.self_attention_cache |
|
|
|
|
|
current_states = key_value_states if key_value_states is not None else hidden_states |
|
if is_cross_attention and past_key_value and is_updated: |
|
|
|
key_states = past_key_value.key_cache[self.layer_idx] |
|
value_states = past_key_value.value_cache[self.layer_idx] |
|
else: |
|
key_states = self._shape(self.k_proj(current_states), -1, bsz) |
|
value_states = self._shape(self.v_proj(current_states), -1, bsz) |
|
if past_key_value is not None: |
|
|
|
cache_position = cache_position if not is_cross_attention else None |
|
key_states, value_states = past_key_value.update( |
|
key_states, value_states, self.layer_idx, {"cache_position": cache_position} |
|
) |
|
|
|
causal_mask = attention_mask |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
|
|
|
|
|
|
|
is_causal = True if self.is_causal and causal_mask is None and tgt_len > 1 else False |
|
|
|
|
|
|
|
attn_output = torch.nn.functional.scaled_dot_product_attention( |
|
query_states, |
|
key_states, |
|
value_states, |
|
attn_mask=causal_mask, |
|
dropout_p=self.dropout if self.training else 0.0, |
|
is_causal=is_causal, |
|
) |
|
|
|
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim): |
|
raise ValueError( |
|
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" |
|
f" {attn_output.size()}" |
|
) |
|
|
|
attn_output = attn_output.transpose(1, 2) |
|
|
|
|
|
|
|
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) |
|
|
|
attn_output = self.out_proj(attn_output) |
|
|
|
return attn_output, None, past_key_value |
|
|
|
|
|
MERALION_SPEECH_ATTENTION_CLASSES = { |
|
"eager": MERaLiONSpeechAttention, |
|
"flash_attention_2": MERaLiONSpeechFlashAttention2, |
|
"sdpa": MERaLiONSpeechSdpaAttention, |
|
} |
|
|
|
|
|
|
|
class MERaLiONSpeechEncoderLayer(nn.Module): |
|
def __init__(self, config: MERaLiONSpeechConfig): |
|
super().__init__() |
|
self.embed_dim = config.d_model |
|
|
|
self.self_attn = MERALION_SPEECH_ATTENTION_CLASSES[config._attn_implementation]( |
|
embed_dim=self.embed_dim, |
|
num_heads=config.encoder_attention_heads, |
|
dropout=config.attention_dropout, |
|
config=config, |
|
) |
|
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) |
|
self.dropout = config.dropout |
|
self.activation_fn = ACT2FN[config.activation_function] |
|
self.activation_dropout = config.activation_dropout |
|
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) |
|
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) |
|
self.final_layer_norm = nn.LayerNorm(self.embed_dim) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
layer_head_mask: torch.Tensor, |
|
output_attentions: bool = False, |
|
) -> torch.Tensor: |
|
""" |
|
Args: |
|
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
attention_mask (`torch.FloatTensor`): attention mask of size |
|
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. |
|
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size |
|
`(encoder_attention_heads,)`. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
""" |
|
residual = hidden_states |
|
hidden_states = self.self_attn_layer_norm(hidden_states) |
|
hidden_states, attn_weights, _ = self.self_attn( |
|
hidden_states=hidden_states, |
|
attention_mask=attention_mask, |
|
layer_head_mask=layer_head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
residual = hidden_states |
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.activation_fn(self.fc1(hidden_states)) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) |
|
hidden_states = self.fc2(hidden_states) |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
hidden_states = residual + hidden_states |
|
|
|
if hidden_states.dtype == torch.float16 and ( |
|
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() |
|
): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
|
|
class MERaLiONSpeechPreTrainedModel(PreTrainedModel): |
|
config_class = MERaLiONSpeechConfig |
|
base_model_prefix = "model" |
|
main_input_name = "input_features" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
std = self.config.init_std |
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, MERaLiONSpeechEncoder): |
|
with torch.no_grad(): |
|
embed_positions = module.embed_positions.weight |
|
embed_positions.copy_(sinusoids(*embed_positions.shape)) |
|
|
|
def _get_feat_extract_output_lengths(self, input_lengths: torch.LongTensor): |
|
""" |
|
Computes the output length of the convolutional layers |
|
""" |
|
input_lengths = (input_lengths - 1) // 2 + 1 |
|
|
|
return input_lengths |
|
|
|
|
|
MERALION_SPEECH_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MERaLiONSpeechConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
MERALION_SPEECH_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`] |
|
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing *SpecAugment* data augmentation on padding token indices. Mask values selected in |
|
`[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`SpeechTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids) |
|
|
|
Speech uses the `decoder_start_token_id` as the starting token for `decoder_input_ids` generation. If |
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also |
|
be used by default. |
|
|
|
If you want to change padding behavior, you should read |
|
[`modeling_speech._prepare_decoder_attention_mask`] and modify to your needs. See diagram 1 in [the BART |
|
paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of |
|
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. |
|
past_key_values (`EncoderDecoderCache` or `tuple(tuple(torch.FloatTensor))`, *optional*): |
|
Pre-computed hidden-states that can be used to speed up auto-regressive (sequential) decoding. There are |
|
four sets of pre-computed hidden-states: key and values states in the self-attention blocks (2) and |
|
in the cross-attention blocks (2). The `past_key_values` are returned when `use_cache=True` is passed or |
|
when `config.use_cache=True` |
|
|
|
Two formats are allowed: |
|
- An [`~cache_utils.EncoderDecoderCache`] instance; |
|
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded |
|
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be |
|
input (see `past_key_values`). This is useful if you want more control over how to convert |
|
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*): |
|
Indices depicting the position of the input sequence tokens in the sequence. It is used to update the cache |
|
in the correct position and to infer the complete sequence length. |
|
""" |
|
|
|
MERALION_SPEECH_ENCODER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`] |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of |
|
hidden-states at the output of the last layer of the encoder. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
class MERaLiONSpeechEncoder(MERaLiONSpeechPreTrainedModel): |
|
""" |
|
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a |
|
[`MERaLiONSpeechEncoderLayer`]. |
|
|
|
Args: |
|
config: MERaLiONSpeechConfig |
|
""" |
|
|
|
def __init__(self, config: MERaLiONSpeechConfig): |
|
super().__init__(config) |
|
self.dropout = config.dropout |
|
self.layerdrop = config.encoder_layerdrop |
|
|
|
embed_dim = config.d_model |
|
self.num_mel_bins = config.num_mel_bins |
|
self.padding_idx = config.pad_token_id |
|
self.max_source_positions = config.max_source_positions |
|
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 |
|
|
|
self.conv1 = nn.Conv1d(self.num_mel_bins, embed_dim, kernel_size=3, padding=1) |
|
self.conv2 = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, stride=2, padding=1) |
|
|
|
self.embed_positions = nn.Embedding(self.max_source_positions, embed_dim) |
|
self.embed_positions.requires_grad_(False) |
|
|
|
self.layers = nn.ModuleList([MERaLiONSpeechEncoderLayer(config) for _ in range(config.encoder_layers)]) |
|
self.layer_norm = nn.LayerNorm(config.d_model) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
self.post_init() |
|
|
|
def _freeze_parameters(self): |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
self._requires_grad = False |
|
|
|
def get_input_embeddings(self) -> nn.Module: |
|
return self.conv1 |
|
|
|
def set_input_embeddings(self, value: nn.Module): |
|
self.conv1 = value |
|
|
|
def forward( |
|
self, |
|
input_features, |
|
attention_mask=None, |
|
head_mask=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=None, |
|
): |
|
r""" |
|
Args: |
|
input_features (`torch.LongTensor` of shape `(batch_size, feature_size, sequence_length)`): |
|
Float values of mel features extracted from the raw speech waveform. Raw speech waveform can be |
|
obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a |
|
`numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into |
|
`input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding |
|
and conversion into a tensor of type `torch.FloatTensor`. See [`~SpeechFeatureExtractor.__call__`] |
|
attention_mask (`torch.Tensor`)`, *optional*): |
|
Speech does not support masking of the `input_features`, this argument is preserved for compatibility, |
|
but it is not used. By default the silence in the input log mel spectrogram are ignored. |
|
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): |
|
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under |
|
returned tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
expected_seq_length = self.config.max_source_positions * self.conv1.stride[0] * self.conv2.stride[0] |
|
if input_features.shape[-1] != expected_seq_length: |
|
raise ValueError( |
|
f"Speech expects the mel input features to be of length {expected_seq_length}, but found {input_features.shape[-1]}. Make sure to pad the input mel features to {expected_seq_length}." |
|
) |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
inputs_embeds = nn.functional.gelu(self.conv1(input_features)) |
|
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds)) |
|
|
|
inputs_embeds = inputs_embeds.permute(0, 2, 1) |
|
embed_pos = self.embed_positions.weight |
|
|
|
hidden_states = inputs_embeds + embed_pos |
|
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
|
|
|
|
if head_mask is not None: |
|
assert head_mask.size()[0] == ( |
|
len(self.layers) |
|
), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
to_drop = False |
|
if self.training: |
|
dropout_probability = torch.rand([]) |
|
if dropout_probability < self.layerdrop: |
|
to_drop = True |
|
|
|
if to_drop: |
|
layer_outputs = (None, None) |
|
else: |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
encoder_layer.__call__, |
|
hidden_states, |
|
None, |
|
(head_mask[idx] if head_mask is not None else None), |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
None, |
|
layer_head_mask=(head_mask[idx] if head_mask is not None else None), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[1],) |
|
|
|
hidden_states = self.layer_norm(hidden_states) |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions |
|
) |
|
|
|
|
|
|
|
@dataclass |
|
class MERaLiONOutputWithPast(ModelOutput): |
|
""" |
|
Base class for MERaLiON causal language model (or autoregressive) outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
Attentions mask, used to update attention mask and position_ids. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
logits: torch.FloatTensor = None |
|
past_key_values: Optional[List[torch.FloatTensor]] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
attention_mask: Optional[torch.FloatTensor] = None |
|
|
|
|
|
MERALION_START_DOCSTRING = r""" |
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`MERaLiONConfig`]): |
|
Model configuration class with all the parameters of the model. Initializing with a config file does not |
|
load the weights associated with the model, only the configuration. Check out the |
|
[`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MERaLiON Model outputting raw hidden-states without any specific head on top.", |
|
MERALION_START_DOCSTRING, |
|
) |
|
class MERaLiONPreTrainedModel(PreTrainedModel): |
|
config_class = MERaLiONConfig |
|
base_model_prefix = "model" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MERaLiONSpeechEncoderLayer", "MERaLiONSpeechDecoderLayer", "MERaLiONTextDecoderLayer"] |
|
_supports_flash_attn_2 = True |
|
_supports_sdpa = True |
|
_supports_cache_class = True |
|
_supports_static_cache = True |
|
|
|
def _init_weights(self, module): |
|
|
|
|
|
std = self.config.init_std if hasattr(self.config, "init_std") else self.config.speech_config.init_std |
|
|
|
if isinstance(module, (nn.Linear, nn.Conv1d)): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
@property |
|
def _supports_sdpa(self): |
|
""" |
|
Retrieve language_model's attribute to check whether the model supports |
|
SDPA or not. |
|
""" |
|
return self.text_decoder._supports_sdpa |
|
|
|
class MERaLiONSpeechAudioAdaper(nn.Module): |
|
def __init__( |
|
self, |
|
config, |
|
**kwargs |
|
): |
|
super(MERaLiONSpeechAudioAdaper, self).__init__() |
|
speech_audio_encoder_output_dim = config.speech_config.d_model |
|
llm_input_hidden_size = config.text_config.hidden_size |
|
speech_mlp_scale_factor = config.speech_mlp_scale_factor |
|
|
|
self.speech_mlp_scale_factor = speech_mlp_scale_factor |
|
self.mlp_adapter = nn.Sequential( |
|
nn.Linear( |
|
in_features=speech_audio_encoder_output_dim * speech_mlp_scale_factor, |
|
out_features=speech_audio_encoder_output_dim |
|
), |
|
nn.SiLU(), |
|
nn.Dropout(0.1), |
|
) |
|
|
|
self.speech_llm_proj = nn.Sequential( |
|
nn.Linear( |
|
speech_audio_encoder_output_dim, |
|
speech_audio_encoder_output_dim * 4 |
|
), |
|
nn.SiLU(), |
|
nn.Dropout(0.1), |
|
|
|
nn.Linear( |
|
speech_audio_encoder_output_dim * 4, |
|
llm_input_hidden_size |
|
), |
|
) |
|
|
|
def forward(self, speech_embeds, **kwargs): |
|
B, T, C = speech_embeds.shape |
|
speech_embeds = self.mlp_adapter( |
|
speech_embeds.reshape( |
|
B, |
|
T // self.speech_mlp_scale_factor, |
|
C * self.speech_mlp_scale_factor, |
|
) |
|
) |
|
return self.speech_llm_proj(speech_embeds) |
|
|
|
|
|
MERALION_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide |
|
it. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, feature_sequence_length)`, *optional*): |
|
Float values mel features extracted from the raw speech waveform. Raw speech waveform can be obtained by |
|
loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via |
|
the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the |
|
[`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a |
|
tensor of type `torch.FloatTensor`. See [`~WhisperFeatureExtractor.__call__`] |
|
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] |
|
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more |
|
information on the default strategy. |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
feature_attention_mask (`torch.Tensor` of shape `(batch_size, feature_sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding feature indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention |
|
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
@add_start_docstrings( |
|
"""The MERALION model which consists of a audio backbone and a language model.""", |
|
MERALION_START_DOCSTRING, |
|
) |
|
class MERaLiONForConditionalGeneration(MERaLiONPreTrainedModel, GenerationMixin): |
|
def __init__(self, config: MERaLiONConfig): |
|
config.text_config._attn_implementation = config._attn_implementation |
|
config.speech_config._attn_implementation = config._attn_implementation |
|
|
|
super().__init__(config) |
|
|
|
self.speech_encoder = MERaLiONSpeechEncoder(config.speech_config) |
|
|
|
|
|
self.ln_speech = nn.LayerNorm(config.speech_config.d_model) |
|
self.speech_audio_adapter = MERaLiONSpeechAudioAdaper(config) |
|
self.vocab_size = config.text_config.vocab_size |
|
self.text_decoder = MERaLiONTextForCausalLM(config.text_config) |
|
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 |
|
self._padding_side = "left" |
|
self.post_init() |
|
|
|
@property |
|
def padding_side(self): |
|
return self._padding_side |
|
|
|
@padding_side.setter |
|
def padding_side(self, padding_side: str): |
|
if padding_side not in ["left", "right"]: |
|
raise ValueError(f"{padding_side} is not `left` or `right`.") |
|
self._padding_side = padding_side |
|
|
|
|
|
def get_input_embeddings(self): |
|
return self.text_decoder.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
self.text_decoder.set_input_embeddings(value) |
|
|
|
|
|
def get_output_embeddings(self): |
|
return self.text_decoder.get_output_embeddings() |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.text_decoder.set_output_embeddings(new_embeddings) |
|
|
|
|
|
def set_decoder(self, decoder): |
|
self.text_decoder.set_decoder(decoder) |
|
|
|
|
|
def get_decoder(self): |
|
return self.text_decoder.get_decoder() |
|
|
|
|
|
def tie_weights(self): |
|
return self.text_decoder.tie_weights() |
|
|
|
|
|
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: |
|
model_embeds = self.text_decoder.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) |
|
|
|
self.config.text_config.vocab_size = model_embeds.num_embeddings |
|
self.vocab_size = model_embeds.num_embeddings |
|
return model_embeds |
|
|
|
@add_start_docstrings_to_model_forward(MERALION_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MERaLiONOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
input_features: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
feature_attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, MERaLiONOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
""" |
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
speech_encoder_device = self.speech_encoder.device |
|
|
|
if input_features is not None: |
|
input_features = input_features.to(speech_encoder_device) |
|
feature_attention_mask = feature_attention_mask.to(speech_encoder_device) |
|
|
|
if inputs_embeds is None: |
|
speech_contexts_embeds = self.speech_encoder(input_features, attention_mask=feature_attention_mask).last_hidden_state |
|
speech_contexts_embeds = self.ln_speech(speech_contexts_embeds) |
|
speech_audio_contexts_embeds = self.speech_audio_adapter(speech_contexts_embeds) |
|
|
|
inputs_embeds = self.text_decoder.base_model.embed_tokens(input_ids) |
|
|
|
speech_mask = (input_ids == self.config.speech_token_index).unsqueeze(-1) |
|
speech_mask = speech_mask.expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
inputs_embeds = inputs_embeds.masked_scatter(speech_mask, speech_audio_contexts_embeds) |
|
|
|
input_ids = None |
|
|
|
outputs = self.text_decoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
cache_position=cache_position, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
labels=labels |
|
) |
|
|
|
return outputs |
|
|
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
attention_mask=None, |
|
input_features=None, |
|
feature_attention_mask=None, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
cache_position=None, |
|
position_ids=None, |
|
use_cache=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
|
|
is_first_step = cache_position[0].item() == 0 |
|
if past_key_values is not None: |
|
if inputs_embeds is not None: |
|
input_ids = input_ids[:, -cache_position.shape[0] :] |
|
elif input_ids.shape[1] != cache_position.shape[0]: |
|
input_ids = input_ids[:, cache_position] |
|
|
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -input_ids.shape[1] :] |
|
|
|
|
|
|
|
|
|
|
|
position_ids = position_ids.clone(memory_format=torch.contiguous_format) |
|
|
|
|
|
if inputs_embeds is not None and is_first_step: |
|
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None} |
|
else: |
|
|
|
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None} |
|
|
|
if ( |
|
isinstance(past_key_values, HybridCache) |
|
and attention_mask.ndim == 2 |
|
and not self.config._attn_implementation == "flash_attention_2" |
|
): |
|
if model_inputs["inputs_embeds"] is not None: |
|
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape |
|
device = model_inputs["inputs_embeds"].device |
|
else: |
|
batch_size, sequence_length = model_inputs["input_ids"].shape |
|
device = model_inputs["input_ids"].device |
|
dtype = self.text_decoder.lm_head.weight.dtype |
|
min_dtype = torch.finfo(dtype).min |
|
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position( |
|
attention_mask, |
|
sequence_length=sequence_length, |
|
target_length=past_key_values.get_max_length(), |
|
dtype=dtype, |
|
device=device, |
|
min_dtype=min_dtype, |
|
cache_position=cache_position, |
|
batch_size=batch_size, |
|
) |
|
|
|
model_inputs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"position_ids": position_ids, |
|
"cache_position": cache_position, |
|
"past_key_values": past_key_values, |
|
"use_cache": use_cache |
|
} |
|
) |
|
|
|
|
|
if is_first_step: |
|
model_inputs["input_features"] = input_features |
|
model_inputs["feature_attention_mask"] = feature_attention_mask |
|
|
|
return model_inputs |
|
|
|
def _reorder_cache(self, *args, **kwargs): |
|
return self.text_decoder._reorder_cache(*args, **kwargs) |