Update README.md
Browse files
README.md
CHANGED
@@ -31,8 +31,8 @@ import soundfile as sf
|
|
31 |
|
32 |
synthesiser = pipeline("text-to-speech", "MBZUAI/speecht5_tts_clartts_ar")
|
33 |
|
34 |
-
embeddings_dataset = load_dataset("
|
35 |
-
speaker_embedding = torch.tensor(embeddings_dataset[
|
36 |
# You can replace this embedding with your own as well.
|
37 |
|
38 |
speech = synthesiser("ูุฃูู ูุง ูุฑู ุฃูู ุนูู ุงูุณูู ุซู
ู
ู ุจุนุฏ ุฐูู ุญุฏูุซ ู
ูุชุดุฑ", forward_params={"speaker_embeddings": speaker_embedding})
|
@@ -56,8 +56,8 @@ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
|
56 |
inputs = processor(text="ูุฃูู ูุง ูุฑู ุฃูู ุนูู ุงูุณูู ุซู
ู
ู ุจุนุฏ ุฐูู ุญุฏูุซ ู
ูุชุดุฑ", return_tensors="pt")
|
57 |
|
58 |
# load xvector containing speaker's voice characteristics from a dataset
|
59 |
-
embeddings_dataset = load_dataset("
|
60 |
-
|
61 |
|
62 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
63 |
|
@@ -65,7 +65,7 @@ sf.write("speech.wav", speech.numpy(), samplerate=16000)
|
|
65 |
```
|
66 |
|
67 |
|
68 |
-
# Citation
|
69 |
|
70 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
71 |
|
|
|
31 |
|
32 |
synthesiser = pipeline("text-to-speech", "MBZUAI/speecht5_tts_clartts_ar")
|
33 |
|
34 |
+
embeddings_dataset = load_dataset("herwoww/arabic_xvect_embeddings", split="validation")
|
35 |
+
speaker_embedding = torch.tensor(embeddings_dataset[1]["speaker_embeddings"]).unsqueeze(0)
|
36 |
# You can replace this embedding with your own as well.
|
37 |
|
38 |
speech = synthesiser("ูุฃูู ูุง ูุฑู ุฃูู ุนูู ุงูุณูู ุซู
ู
ู ุจุนุฏ ุฐูู ุญุฏูุซ ู
ูุชุดุฑ", forward_params={"speaker_embeddings": speaker_embedding})
|
|
|
56 |
inputs = processor(text="ูุฃูู ูุง ูุฑู ุฃูู ุนูู ุงูุณูู ุซู
ู
ู ุจุนุฏ ุฐูู ุญุฏูุซ ู
ูุชุดุฑ", return_tensors="pt")
|
57 |
|
58 |
# load xvector containing speaker's voice characteristics from a dataset
|
59 |
+
embeddings_dataset = load_dataset("herwoww/arabic_xvect_embeddings", split="validation")
|
60 |
+
speaker_embedding = torch.tensor(embeddings_dataset[1]["speaker_embeddings"]).unsqueeze(0)
|
61 |
|
62 |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
63 |
|
|
|
65 |
```
|
66 |
|
67 |
|
68 |
+
# Citation
|
69 |
|
70 |
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
71 |
|