WladimirLct
commited on
Upload 2 files
Browse files- dataset_generation.ipynb +750 -0
- model_training.ipynb +0 -0
dataset_generation.ipynb
ADDED
@@ -0,0 +1,750 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"## Delete the lines with a brown background color in the excel files\n",
|
8 |
+
"The excel files are located in the Data/Classification/labeled_data folder of the MESCnn repository."
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 4,
|
14 |
+
"metadata": {},
|
15 |
+
"outputs": [],
|
16 |
+
"source": [
|
17 |
+
"from openpyxl import Workbook, load_workbook\n",
|
18 |
+
"import os \n",
|
19 |
+
"\n",
|
20 |
+
"path_to_excel = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Excels\"\n",
|
21 |
+
"\n",
|
22 |
+
"# Function to get the RGB value of a color\n",
|
23 |
+
"def get_rgb(color):\n",
|
24 |
+
" return tuple(int(color[i:i+2], 16) for i in (0, 2, 4))\n",
|
25 |
+
"\n",
|
26 |
+
"for file in os.listdir(path_to_excel):\n",
|
27 |
+
" if file.endswith(\".xlsx\") or file.endswith(\".XLSX\"):\n",
|
28 |
+
" file = os.path.join(path_to_excel, file)\n",
|
29 |
+
" # Load the workbook\n",
|
30 |
+
" workbook = load_workbook(file)\n",
|
31 |
+
" \n",
|
32 |
+
" # Select the first sheet\n",
|
33 |
+
" sheet = workbook.active\n",
|
34 |
+
" \n",
|
35 |
+
" # Create a new workbook\n",
|
36 |
+
" new_workbook = Workbook()\n",
|
37 |
+
" new_sheet = new_workbook.active\n",
|
38 |
+
" \n",
|
39 |
+
" # List to store rows with RGB colors\n",
|
40 |
+
" rows_with_rgb = []\n",
|
41 |
+
" \n",
|
42 |
+
" # Iterate through each row\n",
|
43 |
+
" for row_idx, row in enumerate(sheet.iter_rows(), start=1):\n",
|
44 |
+
" row_colors = []\n",
|
45 |
+
" has_rgb_color = False # Flag to check if row has any RGB color\n",
|
46 |
+
" # Iterate through each cell in the row\n",
|
47 |
+
" for cell in row:\n",
|
48 |
+
" fill = cell.fill\n",
|
49 |
+
" if fill.start_color.type == 'rgb':\n",
|
50 |
+
" rgb_value = get_rgb(fill.start_color.rgb)\n",
|
51 |
+
" row_colors.append(rgb_value)\n",
|
52 |
+
" has_rgb_color = True\n",
|
53 |
+
" # Check if the row has at least one RGB color\n",
|
54 |
+
" if has_rgb_color:\n",
|
55 |
+
" rows_with_rgb.append(row)\n",
|
56 |
+
" \n",
|
57 |
+
" # Write rows with RGB colors to the new workbook\n",
|
58 |
+
" for row in rows_with_rgb:\n",
|
59 |
+
" new_sheet.append([cell.value for cell in row])\n",
|
60 |
+
" \n",
|
61 |
+
" # Save the new workbook\n",
|
62 |
+
" new_workbook.save(file)"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"metadata": {},
|
68 |
+
"source": [
|
69 |
+
"## Extract labeled data from excel files"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 5,
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [
|
77 |
+
{
|
78 |
+
"name": "stdout",
|
79 |
+
"output_type": "stream",
|
80 |
+
"text": [
|
81 |
+
"C1104066_JGI.XLSX\n",
|
82 |
+
"C1105034_JGI.XLSX\n",
|
83 |
+
"C1110748_JGI.xlsx\n",
|
84 |
+
"C1112141_JGI.XLSX\n",
|
85 |
+
"C1105798_JGI.xlsx\n",
|
86 |
+
"C1117893_JGI.xlsx\n",
|
87 |
+
"C1107892_JGI.xlsx\n",
|
88 |
+
"C1107752_JGI.xlsx\n",
|
89 |
+
"C1105642_JGI.XLSX\n",
|
90 |
+
" Patch names M E S \\\n",
|
91 |
+
"0 glomerulus C1104066 [10884, 59188, 956, 948].jpeg 0 0 1 \n",
|
92 |
+
"1 glomerulus C1104066 [142336, 49680, 744, 640].... 0 0 GGS \n",
|
93 |
+
"2 glomerulus C1104066 [142772, 48280, 1100, 864]... 1 0 0 \n",
|
94 |
+
"3 glomerulus C1104066 [153544, 5020, 752, 628].jpeg 0 0 GGS \n",
|
95 |
+
"4 glomerulus C1104066 [28172, 21868, 736, 748].jpeg 0 0 1 \n",
|
96 |
+
".. ... ... ... ... \n",
|
97 |
+
"47 glomerulus C1105642 [73828, 68492, 580, 600].jpeg nan_label noE GGS \n",
|
98 |
+
"48 glomerulus C1105642 [73928, 69260, 772, 788].jpeg 1 0 1 \n",
|
99 |
+
"49 glomerulus C1105642 [74416, 19216, 604, 644].jpeg nan_label noE GGS \n",
|
100 |
+
"50 glomerulus C1105642 [76040, 21156, 568, 544].jpeg nan_label noE GGS \n",
|
101 |
+
"51 glomerulus C1105642 [76848, 70520, 624, 680].jpeg nan_label noE GGS \n",
|
102 |
+
"\n",
|
103 |
+
" C \n",
|
104 |
+
"0 0 \n",
|
105 |
+
"1 0 \n",
|
106 |
+
"2 0 \n",
|
107 |
+
"3 0 \n",
|
108 |
+
"4 0 \n",
|
109 |
+
".. ... \n",
|
110 |
+
"47 noC \n",
|
111 |
+
"48 0 \n",
|
112 |
+
"49 noC \n",
|
113 |
+
"50 noC \n",
|
114 |
+
"51 noC \n",
|
115 |
+
"\n",
|
116 |
+
"[470 rows x 5 columns]\n",
|
117 |
+
"(470, 5)\n"
|
118 |
+
]
|
119 |
+
}
|
120 |
+
],
|
121 |
+
"source": [
|
122 |
+
"import pandas as pd\n",
|
123 |
+
" \n",
|
124 |
+
"# Set the path to the labeled data directory\n",
|
125 |
+
"labeled_data_dir = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Excels\"\n",
|
126 |
+
"\n",
|
127 |
+
"# Get the list of excel files in the labeled data directory\n",
|
128 |
+
"excel_files = [file for file in os.listdir(labeled_data_dir) if file.endswith(\".xlsx\") or file.endswith(\".XLSX\")]\n",
|
129 |
+
"\n",
|
130 |
+
"# Create an empty dataframe\n",
|
131 |
+
"df_combined = pd.DataFrame(columns=[\"Patch names\", \"M\", \"E\", \"S\", \"C\"])\n",
|
132 |
+
"\n",
|
133 |
+
"# Iterate over the excel files\n",
|
134 |
+
"for file in excel_files:\n",
|
135 |
+
" print(file)\n",
|
136 |
+
" # Read the excel file\n",
|
137 |
+
" df = pd.read_excel(os.path.join(labeled_data_dir, file))\n",
|
138 |
+
" \n",
|
139 |
+
" if file == \"C1107752_JGI.xlsx\": # This file raises an error for a reason I don't understand\n",
|
140 |
+
" corrected_index = 61 \n",
|
141 |
+
" else:\n",
|
142 |
+
" # Find the index of the row with \"CORRECTED\" or \"Corrected\" value in the first column\n",
|
143 |
+
" if (df.iloc[:, 0] == \"CORRECTED\").any():\n",
|
144 |
+
" corrected_index = df[df.iloc[:, 0] == \"CORRECTED\"].index[0]\n",
|
145 |
+
" elif (df.iloc[:, 0] == \"Corrected\").any():\n",
|
146 |
+
" corrected_index = df[df.iloc[:, 0] == \"Corrected\"].index[0]\n",
|
147 |
+
" elif (df.iloc[:, 0] == \"CORRECTED JGI\").any():\n",
|
148 |
+
" corrected_index = df[df.iloc[:, 0] == \"CORRECTED JGI\"].index[0]\n",
|
149 |
+
" else:\n",
|
150 |
+
" corrected_index = df[df.iloc[:, 0] == \"filename\"].index[0] \n",
|
151 |
+
" \n",
|
152 |
+
" # Skip the rows before the \"CORRECTED\" row and select the following rows\n",
|
153 |
+
" df = df.iloc[corrected_index + 1:]\n",
|
154 |
+
" \n",
|
155 |
+
" # Get the values in the M, E, S, and C columns\n",
|
156 |
+
" m_values = df[\"M\"].values\n",
|
157 |
+
" e_values = df[\"E\"].values\n",
|
158 |
+
" s_values = df[\"S\"].values\n",
|
159 |
+
" c_values = df[\"C\"].values\n",
|
160 |
+
" \n",
|
161 |
+
" # Get the name of each patch in the Patch_name column\n",
|
162 |
+
" patch_names = df[\"filename\"].values\n",
|
163 |
+
" \n",
|
164 |
+
" # Split the patch names to keep only the part after the last '\\'\n",
|
165 |
+
" patch_names = [name.split('\\\\')[-1] for name in patch_names]\n",
|
166 |
+
" \n",
|
167 |
+
" # Create a dataframe for the current file\n",
|
168 |
+
" df_current = pd.DataFrame({\n",
|
169 |
+
" \"Patch names\": patch_names,\n",
|
170 |
+
" \"M\": m_values,\n",
|
171 |
+
" \"E\": e_values,\n",
|
172 |
+
" \"S\": s_values,\n",
|
173 |
+
" \"C\": c_values\n",
|
174 |
+
" })\n",
|
175 |
+
" \n",
|
176 |
+
" # Append the current dataframe to the combined dataframe\n",
|
177 |
+
" df_combined = pd.concat([df_combined, df_current])\n",
|
178 |
+
"\n",
|
179 |
+
"# Print the combined dataframe\n",
|
180 |
+
"print(df_combined)\n",
|
181 |
+
"print(df_combined.shape)\n"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": 6,
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [
|
189 |
+
{
|
190 |
+
"name": "stdout",
|
191 |
+
"output_type": "stream",
|
192 |
+
"text": [
|
193 |
+
" Patch names M E S \\\n",
|
194 |
+
"0 glomerulus C1104066 [10884, 59188, 956, 948].jpeg noM noE SGS \n",
|
195 |
+
"1 glomerulus C1104066 [142336, 49680, 744, 640].... noM noE GGS \n",
|
196 |
+
"2 glomerulus C1104066 [142772, 48280, 1100, 864]... yesM noE NoGS \n",
|
197 |
+
"3 glomerulus C1104066 [153544, 5020, 752, 628].jpeg noM noE GGS \n",
|
198 |
+
"4 glomerulus C1104066 [28172, 21868, 736, 748].jpeg noM noE SGS \n",
|
199 |
+
".. ... ... ... ... \n",
|
200 |
+
"47 glomerulus C1105642 [73828, 68492, 580, 600].jpeg nan_label noE GGS \n",
|
201 |
+
"48 glomerulus C1105642 [73928, 69260, 772, 788].jpeg yesM noE SGS \n",
|
202 |
+
"49 glomerulus C1105642 [74416, 19216, 604, 644].jpeg nan_label noE GGS \n",
|
203 |
+
"50 glomerulus C1105642 [76040, 21156, 568, 544].jpeg nan_label noE GGS \n",
|
204 |
+
"51 glomerulus C1105642 [76848, 70520, 624, 680].jpeg nan_label noE GGS \n",
|
205 |
+
"\n",
|
206 |
+
" C \n",
|
207 |
+
"0 noC \n",
|
208 |
+
"1 noC \n",
|
209 |
+
"2 noC \n",
|
210 |
+
"3 noC \n",
|
211 |
+
"4 noC \n",
|
212 |
+
".. ... \n",
|
213 |
+
"47 noC \n",
|
214 |
+
"48 noC \n",
|
215 |
+
"49 noC \n",
|
216 |
+
"50 noC \n",
|
217 |
+
"51 noC \n",
|
218 |
+
"\n",
|
219 |
+
"[470 rows x 5 columns]\n"
|
220 |
+
]
|
221 |
+
}
|
222 |
+
],
|
223 |
+
"source": [
|
224 |
+
"mesc_def = {\n",
|
225 |
+
" \"M\": {\n",
|
226 |
+
" 0: \"noM\",\n",
|
227 |
+
" 1: \"yesM\",\n",
|
228 |
+
" },\n",
|
229 |
+
" \"E\": {\n",
|
230 |
+
" 0: \"noE\",\n",
|
231 |
+
" 1: \"yesE\"\n",
|
232 |
+
" },\n",
|
233 |
+
" \"S\": {\n",
|
234 |
+
" \"GGS\": \"GGS\",\n",
|
235 |
+
" 0: \"NoGS\",\n",
|
236 |
+
" 1: \"SGS\"\n",
|
237 |
+
" },\n",
|
238 |
+
" \"C\": {\n",
|
239 |
+
" 0: \"noC\",\n",
|
240 |
+
" 1: \"yesC\"\n",
|
241 |
+
" }\n",
|
242 |
+
"}\n",
|
243 |
+
"df_combined[\"M\"] = df_combined[\"M\"].replace(mesc_def[\"M\"])\n",
|
244 |
+
"df_combined[\"E\"] = df_combined[\"E\"].replace(mesc_def[\"E\"])\n",
|
245 |
+
"df_combined[\"S\"] = df_combined[\"S\"].replace(mesc_def[\"S\"])\n",
|
246 |
+
"df_combined[\"C\"] = df_combined[\"C\"].replace(mesc_def[\"C\"])\n",
|
247 |
+
"print(df_combined)"
|
248 |
+
]
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"cell_type": "code",
|
252 |
+
"execution_count": 7,
|
253 |
+
"metadata": {},
|
254 |
+
"outputs": [
|
255 |
+
{
|
256 |
+
"name": "stdout",
|
257 |
+
"output_type": "stream",
|
258 |
+
"text": [
|
259 |
+
"['yesE', 'noM', 'noE', 'NoGS', 10, 'yesC', 'noC', 'yesM', 'SGS', 'GGS', nan, 'nan_label']\n",
|
260 |
+
" Patch names M E S C\n",
|
261 |
+
"0 glomerulus C1104066 [10884, 59188, 956, 948].jpeg noM noE SGS noC\n",
|
262 |
+
"1 glomerulus C1104066 [142336, 49680, 744, 640].... NaN NaN GGS NaN\n",
|
263 |
+
"2 glomerulus C1104066 [142772, 48280, 1100, 864]... yesM noE NoGS noC\n",
|
264 |
+
"3 glomerulus C1104066 [153544, 5020, 752, 628].jpeg NaN NaN GGS NaN\n",
|
265 |
+
"4 glomerulus C1104066 [28172, 21868, 736, 748].jpeg noM noE SGS noC\n",
|
266 |
+
".. ... ... ... ... ...\n",
|
267 |
+
"47 glomerulus C1105642 [73828, 68492, 580, 600].jpeg NaN NaN GGS NaN\n",
|
268 |
+
"48 glomerulus C1105642 [73928, 69260, 772, 788].jpeg yesM noE SGS noC\n",
|
269 |
+
"49 glomerulus C1105642 [74416, 19216, 604, 644].jpeg NaN NaN GGS NaN\n",
|
270 |
+
"50 glomerulus C1105642 [76040, 21156, 568, 544].jpeg NaN NaN GGS NaN\n",
|
271 |
+
"51 glomerulus C1105642 [76848, 70520, 624, 680].jpeg NaN NaN GGS NaN\n",
|
272 |
+
"\n",
|
273 |
+
"[470 rows x 5 columns]\n"
|
274 |
+
]
|
275 |
+
}
|
276 |
+
],
|
277 |
+
"source": [
|
278 |
+
"import numpy as np\n",
|
279 |
+
"labels = df_combined[['M', 'E', 'S', 'C']].values.flatten()\n",
|
280 |
+
"distinct_labels = list(set(labels))\n",
|
281 |
+
"print(distinct_labels)\n",
|
282 |
+
"\n",
|
283 |
+
"possible_labels = [\"noM\", \"yesM\", \"noE\", \"yesE\", \"GGS\", \"NoGS\", \"SGS\", \"noC\", \"yesC\", \"nan_label\"]\n",
|
284 |
+
"\n",
|
285 |
+
"# Replace values that are not in the possible_labels list with NaN\n",
|
286 |
+
"df_combined.loc[:, 'M':'C'] = df_combined.loc[:, 'M':'C'].apply(lambda x: np.where(x.isin(possible_labels), x, np.nan))\n",
|
287 |
+
"\n",
|
288 |
+
"# If the value in the S column is \"GGS\", set the value in the other columns to NaN\n",
|
289 |
+
"df_combined.loc[df_combined[\"S\"] == \"GGS\", [\"M\", \"E\", \"C\"]] = np.nan\n",
|
290 |
+
"\n",
|
291 |
+
"# Print the updated dataframe\n",
|
292 |
+
"print(df_combined)"
|
293 |
+
]
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"cell_type": "code",
|
297 |
+
"execution_count": 8,
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [
|
300 |
+
{
|
301 |
+
"name": "stdout",
|
302 |
+
"output_type": "stream",
|
303 |
+
"text": [
|
304 |
+
" Patch names M E S C\n",
|
305 |
+
"1 glomerulus C1104066 [142336, 49680, 744, 640].... NaN NaN GGS NaN\n",
|
306 |
+
"3 glomerulus C1104066 [153544, 5020, 752, 628].jpeg NaN NaN GGS NaN\n",
|
307 |
+
"7 glomerulus C1104066 [8044, 62252, 752, 796].jpeg NaN NaN GGS NaN\n",
|
308 |
+
"15 glomerulus C1104066 [94652, 48228, 636, 644].jpeg NaN NaN GGS NaN\n",
|
309 |
+
"17 glomerulus C1105034 [150832, 29052, 600, 496].... NaN NaN GGS NaN\n",
|
310 |
+
"9 glomerulus C1110748 [129452, 5728, 708, 512].jpeg NaN NaN GGS NaN\n",
|
311 |
+
"19 glomerulus C1110748 [134904, 7652, 776, 692].jpeg NaN NaN GGS NaN\n",
|
312 |
+
"22 glomerulus C1110748 [136192, 55140, 788, 688].... NaN NaN GGS NaN\n",
|
313 |
+
"25 glomerulus C1110748 [145592, 41936, 740, 640].... NaN NaN GGS NaN\n",
|
314 |
+
"40 glomerulus C1110748 [154628, 24972, 804, 684].... NaN NaN GGS NaN\n",
|
315 |
+
"41 glomerulus C1110748 [155592, 25764, 648, 612].... NaN NaN GGS NaN\n",
|
316 |
+
"46 glomerulus C1110748 [156748, 71428, 812, 692].... NaN NaN GGS NaN\n",
|
317 |
+
"48 glomerulus C1110748 [157812, 72180, 600, 536].... NaN NaN GGS NaN\n",
|
318 |
+
"36 glomerulus C1112141 [78580, 16560, 656, 788].jpeg NaN NaN GGS NaN\n",
|
319 |
+
"43 glomerulus C1112141 [82724, 17252, 860, 808].jpeg NaN NaN GGS NaN\n",
|
320 |
+
"46 glomerulus C1112141 [83852, 19840, 884, 944].jpeg yesM NaN NoGS noC\n",
|
321 |
+
"48 glomerulus C1112141 [86140, 60432, 720, 776].jpeg NaN NaN GGS NaN\n",
|
322 |
+
"50 glomerulus C1112141 [87964, 20760, 672, 732].jpeg NaN NaN GGS NaN\n",
|
323 |
+
"55 glomerulus C1112141 [90196, 61504, 848, 804].jpeg NaN NaN GGS NaN\n",
|
324 |
+
"58 glomerulus C1112141 [95092, 65612, 680, 668].jpeg NaN NaN GGS NaN\n",
|
325 |
+
"4 glomerulus C1105798 [118952, 9668, 980, 896].jpeg NaN NaN GGS NaN\n",
|
326 |
+
"6 glomerulus C1105798 [120488, 15428, 684, 516].... NaN NaN GGS NaN\n",
|
327 |
+
"14 glomerulus C1105798 [129104, 54064, 708, 576].... NaN NaN GGS NaN\n",
|
328 |
+
"54 glomerulus C1105798 [76196, 61668, 740, 968].jpeg NaN NaN GGS NaN\n",
|
329 |
+
"28 glomerulus C1117893 [26068, 32092, 724, 708].jpeg NaN NaN GGS NaN\n",
|
330 |
+
"32 glomerulus C1117893 [31252, 77564, 700, 696].jpeg NaN NaN GGS NaN\n",
|
331 |
+
"33 glomerulus C1117893 [65224, 17120, 528, 544].jpeg NaN NaN GGS NaN\n",
|
332 |
+
"11 glomerulus C1107892 [126480, 27244, 588, 564].... NaN NaN GGS NaN\n",
|
333 |
+
"43 glomerulus C1107892 [75916, 26668, 564, 572].jpeg NaN NaN GGS NaN\n",
|
334 |
+
"44 glomerulus C1107892 [76200, 75040, 508, 576].jpeg NaN NaN GGS NaN\n",
|
335 |
+
"48 glomerulus C1107892 [77772, 25272, 740, 760].jpeg NaN NaN GGS NaN\n",
|
336 |
+
"49 glomerulus C1107892 [77980, 73584, 732, 724].jpeg NaN NaN GGS NaN\n",
|
337 |
+
"55 glomerulus C1107892 [80568, 69696, 616, 644].jpeg NaN NaN GGS NaN\n",
|
338 |
+
"56 glomerulus C1107892 [80608, 21544, 624, 660].jpeg NaN NaN GGS NaN\n",
|
339 |
+
"11 glomerulus C1105642 [136108, 72452, 612, 532].... NaN NaN GGS NaN\n",
|
340 |
+
"12 glomerulus C1105642 [136892, 73056, 596, 540].... NaN NaN GGS NaN\n",
|
341 |
+
"13 glomerulus C1105642 [137860, 71816, 640, 728].... NaN NaN GGS NaN\n",
|
342 |
+
"18 glomerulus C1105642 [140788, 20956, 616, 548].... NaN NaN GGS NaN\n",
|
343 |
+
"19 glomerulus C1105642 [141656, 21460, 620, 576].... NaN NaN GGS NaN\n",
|
344 |
+
"20 glomerulus C1105642 [142460, 20320, 540, 512].... NaN NaN GGS NaN\n",
|
345 |
+
"22 glomerulus C1105642 [14640, 21940, 524, 584].jpeg NaN NaN GGS NaN\n",
|
346 |
+
"29 glomerulus C1105642 [64876, 12060, 596, 648].jpeg NaN NaN GGS NaN\n",
|
347 |
+
"33 glomerulus C1105642 [67600, 62876, 656, 680].jpeg NaN NaN GGS NaN\n",
|
348 |
+
"35 glomerulus C1105642 [68388, 15580, 644, 604].jpeg NaN NaN GGS NaN\n",
|
349 |
+
"40 glomerulus C1105642 [70972, 66596, 652, 628].jpeg NaN NaN GGS NaN\n",
|
350 |
+
"41 glomerulus C1105642 [71324, 17312, 560, 556].jpeg NaN NaN GGS NaN\n",
|
351 |
+
"46 glomerulus C1105642 [72752, 20572, 620, 524].jpeg NaN NaN GGS NaN\n",
|
352 |
+
"47 glomerulus C1105642 [73828, 68492, 580, 600].jpeg NaN NaN GGS NaN\n",
|
353 |
+
"49 glomerulus C1105642 [74416, 19216, 604, 644].jpeg NaN NaN GGS NaN\n",
|
354 |
+
"50 glomerulus C1105642 [76040, 21156, 568, 544].jpeg NaN NaN GGS NaN\n",
|
355 |
+
"51 glomerulus C1105642 [76848, 70520, 624, 680].jpeg NaN NaN GGS NaN\n"
|
356 |
+
]
|
357 |
+
}
|
358 |
+
],
|
359 |
+
"source": [
|
360 |
+
"nan_rows = df_combined[df_combined.isnull().any(axis=1)]\n",
|
361 |
+
"print(nan_rows)"
|
362 |
+
]
|
363 |
+
},
|
364 |
+
{
|
365 |
+
"cell_type": "code",
|
366 |
+
"execution_count": 9,
|
367 |
+
"metadata": {},
|
368 |
+
"outputs": [
|
369 |
+
{
|
370 |
+
"data": {
|
371 |
+
"text/html": [
|
372 |
+
"<div>\n",
|
373 |
+
"<style scoped>\n",
|
374 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
375 |
+
" vertical-align: middle;\n",
|
376 |
+
" }\n",
|
377 |
+
"\n",
|
378 |
+
" .dataframe tbody tr th {\n",
|
379 |
+
" vertical-align: top;\n",
|
380 |
+
" }\n",
|
381 |
+
"\n",
|
382 |
+
" .dataframe thead th {\n",
|
383 |
+
" text-align: right;\n",
|
384 |
+
" }\n",
|
385 |
+
"</style>\n",
|
386 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
387 |
+
" <thead>\n",
|
388 |
+
" <tr style=\"text-align: right;\">\n",
|
389 |
+
" <th></th>\n",
|
390 |
+
" <th>Patch names</th>\n",
|
391 |
+
" <th>M</th>\n",
|
392 |
+
" <th>E</th>\n",
|
393 |
+
" <th>S</th>\n",
|
394 |
+
" <th>C</th>\n",
|
395 |
+
" </tr>\n",
|
396 |
+
" </thead>\n",
|
397 |
+
" <tbody>\n",
|
398 |
+
" <tr>\n",
|
399 |
+
" <th>1</th>\n",
|
400 |
+
" <td>glomerulus C1107752 [130360, 32956, 1020, 1008...</td>\n",
|
401 |
+
" <td>yesM</td>\n",
|
402 |
+
" <td>yesE</td>\n",
|
403 |
+
" <td>NoGS</td>\n",
|
404 |
+
" <td>yesC</td>\n",
|
405 |
+
" </tr>\n",
|
406 |
+
" <tr>\n",
|
407 |
+
" <th>6</th>\n",
|
408 |
+
" <td>glomerulus C1107752 [135308, 69504, 1012, 1004...</td>\n",
|
409 |
+
" <td>yesM</td>\n",
|
410 |
+
" <td>noE</td>\n",
|
411 |
+
" <td>NoGS</td>\n",
|
412 |
+
" <td>yesC</td>\n",
|
413 |
+
" </tr>\n",
|
414 |
+
" <tr>\n",
|
415 |
+
" <th>10</th>\n",
|
416 |
+
" <td>glomerulus C1107752 [137584, 31764, 836, 872]....</td>\n",
|
417 |
+
" <td>yesM</td>\n",
|
418 |
+
" <td>noE</td>\n",
|
419 |
+
" <td>NoGS</td>\n",
|
420 |
+
" <td>yesC</td>\n",
|
421 |
+
" </tr>\n",
|
422 |
+
" <tr>\n",
|
423 |
+
" <th>39</th>\n",
|
424 |
+
" <td>glomerulus C1107752 [87436, 35528, 724, 844].jpeg</td>\n",
|
425 |
+
" <td>yesM</td>\n",
|
426 |
+
" <td>noE</td>\n",
|
427 |
+
" <td>NoGS</td>\n",
|
428 |
+
" <td>yesC</td>\n",
|
429 |
+
" </tr>\n",
|
430 |
+
" <tr>\n",
|
431 |
+
" <th>2</th>\n",
|
432 |
+
" <td>glomerulus C1105642 [120200, 56808, 1304, 1140...</td>\n",
|
433 |
+
" <td>yesM</td>\n",
|
434 |
+
" <td>noE</td>\n",
|
435 |
+
" <td>SGS</td>\n",
|
436 |
+
" <td>yesC</td>\n",
|
437 |
+
" </tr>\n",
|
438 |
+
" </tbody>\n",
|
439 |
+
"</table>\n",
|
440 |
+
"</div>"
|
441 |
+
],
|
442 |
+
"text/plain": [
|
443 |
+
" Patch names M E S C\n",
|
444 |
+
"1 glomerulus C1107752 [130360, 32956, 1020, 1008... yesM yesE NoGS yesC\n",
|
445 |
+
"6 glomerulus C1107752 [135308, 69504, 1012, 1004... yesM noE NoGS yesC\n",
|
446 |
+
"10 glomerulus C1107752 [137584, 31764, 836, 872].... yesM noE NoGS yesC\n",
|
447 |
+
"39 glomerulus C1107752 [87436, 35528, 724, 844].jpeg yesM noE NoGS yesC\n",
|
448 |
+
"2 glomerulus C1105642 [120200, 56808, 1304, 1140... yesM noE SGS yesC"
|
449 |
+
]
|
450 |
+
},
|
451 |
+
"execution_count": 9,
|
452 |
+
"metadata": {},
|
453 |
+
"output_type": "execute_result"
|
454 |
+
}
|
455 |
+
],
|
456 |
+
"source": [
|
457 |
+
"# print the rows with yesC in the C column\n",
|
458 |
+
"yesC_rows = df_combined[df_combined[\"C\"] == \"yesC\"]\n",
|
459 |
+
"yesC_rows"
|
460 |
+
]
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "markdown",
|
464 |
+
"metadata": {},
|
465 |
+
"source": [
|
466 |
+
"## Separate the patches into train and val sets \n",
|
467 |
+
"Test set needs to be added but we didn't have enough data so we decided to use the validation set as the test set."
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"execution_count": 10,
|
473 |
+
"metadata": {},
|
474 |
+
"outputs": [
|
475 |
+
{
|
476 |
+
"name": "stdout",
|
477 |
+
"output_type": "stream",
|
478 |
+
"text": [
|
479 |
+
"Seed is -828\n"
|
480 |
+
]
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"name": "stdout",
|
484 |
+
"output_type": "stream",
|
485 |
+
"text": [
|
486 |
+
"WSI images have been split into train and val folders.\n"
|
487 |
+
]
|
488 |
+
}
|
489 |
+
],
|
490 |
+
"source": [
|
491 |
+
"import random\n",
|
492 |
+
"import shutil\n",
|
493 |
+
"import sys\n",
|
494 |
+
"\n",
|
495 |
+
"# Set the path to the Crop-256 folder\n",
|
496 |
+
"crop256_folder = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Crops\"\n",
|
497 |
+
"\n",
|
498 |
+
"# Set the path to the Data/Classification folder\n",
|
499 |
+
"dataset_folder = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Classification\"\n",
|
500 |
+
"\n",
|
501 |
+
"# Set the train and val ratio\n",
|
502 |
+
"train_ratio = 0.7\n",
|
503 |
+
"val_ratio = 0.3\n",
|
504 |
+
"\n",
|
505 |
+
"# Create the train and val folders\n",
|
506 |
+
"train_folder = os.path.join(dataset_folder, \"train\")\n",
|
507 |
+
"val_folder = os.path.join(dataset_folder, \"val\")\n",
|
508 |
+
"os.makedirs(train_folder, exist_ok=True)\n",
|
509 |
+
"os.makedirs(val_folder, exist_ok=True)\n",
|
510 |
+
"\n",
|
511 |
+
"# If the train and val folders are not empty, ask the user to confirm if they want to overwrite the folders\n",
|
512 |
+
"if len(os.listdir(train_folder)) > 0 or len(os.listdir(val_folder)) > 0:\n",
|
513 |
+
" response = input(\"The train and val folders are not empty. Do you want to overwrite the folders? (yes/no): \")\n",
|
514 |
+
" if response.lower() != \"yes\":\n",
|
515 |
+
" print(\"Exiting the script.\")\n",
|
516 |
+
" sys.exit()\n",
|
517 |
+
" if response.lower() == \"yes\":\n",
|
518 |
+
" # Remove the existing folders\n",
|
519 |
+
" shutil.rmtree(train_folder)\n",
|
520 |
+
" shutil.rmtree(val_folder)\n",
|
521 |
+
" # Create the folders again\n",
|
522 |
+
" os.makedirs(train_folder, exist_ok=True)\n",
|
523 |
+
" os.makedirs(val_folder, exist_ok=True)\n",
|
524 |
+
" \n",
|
525 |
+
"# Get the list of WSI folders in the Crop-256 folder\n",
|
526 |
+
"wsi_folders = [wsi for wsi in os.listdir(crop256_folder)]\n",
|
527 |
+
"\n",
|
528 |
+
"# Shuffle the list of WSI images\n",
|
529 |
+
"seed = random.randint(-1000, 1000)\n",
|
530 |
+
"print(f\"Seed is {seed}\")\n",
|
531 |
+
"random.seed(seed) # Allows for reproducibility\n",
|
532 |
+
"\n",
|
533 |
+
"imgs = []\n",
|
534 |
+
"os.makedirs(os.path.join(train_folder), exist_ok=True)\n",
|
535 |
+
"for wsi in wsi_folders:\n",
|
536 |
+
" # Copy the images to the train folder\n",
|
537 |
+
" for image in os.listdir(os.path.join(crop256_folder, wsi)):\n",
|
538 |
+
" src_path = os.path.join(crop256_folder, wsi, image)\n",
|
539 |
+
" dst_path = os.path.join(dataset_folder, image)\n",
|
540 |
+
" imgs.append(image)\n",
|
541 |
+
" shutil.copy(src_path, dst_path)\n",
|
542 |
+
"\n",
|
543 |
+
"# Shuffle the list of image paths\n",
|
544 |
+
"random.seed(seed) # Allows for reproducibility\n",
|
545 |
+
"random.shuffle(imgs)\n",
|
546 |
+
"\n",
|
547 |
+
"# Split the image paths into train and val sets\n",
|
548 |
+
"train_size = int(train_ratio * len(imgs))\n",
|
549 |
+
"train_imgs = imgs[:train_size]\n",
|
550 |
+
"val_imgs = imgs[train_size:]\n",
|
551 |
+
"\n",
|
552 |
+
"# Copy the train images to the train folder\n",
|
553 |
+
"os.makedirs(os.path.join(train_folder), exist_ok=True)\n",
|
554 |
+
"# Copy the images to the train folder\n",
|
555 |
+
"for image in train_imgs:\n",
|
556 |
+
" src_path = os.path.join(dataset_folder, image)\n",
|
557 |
+
" dst_path = os.path.join(train_folder, image)\n",
|
558 |
+
" shutil.copy(src_path, dst_path)\n",
|
559 |
+
" \n",
|
560 |
+
"# Create the folder in the val folder\n",
|
561 |
+
"os.makedirs(os.path.join(val_folder), exist_ok=True)\n",
|
562 |
+
"# Copy the images to the val folder\n",
|
563 |
+
"for image in val_imgs:\n",
|
564 |
+
" src_path = os.path.join(dataset_folder, image)\n",
|
565 |
+
" dst_path = os.path.join(val_folder, image)\n",
|
566 |
+
" shutil.copy(src_path, dst_path)\n",
|
567 |
+
"\n",
|
568 |
+
"# Remove the images from the dataset folder\n",
|
569 |
+
"for image in imgs:\n",
|
570 |
+
" os.remove(os.path.join(dataset_folder, image))\n",
|
571 |
+
"\n",
|
572 |
+
"print(\"WSI images have been split into train and val folders.\")"
|
573 |
+
]
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"cell_type": "markdown",
|
577 |
+
"metadata": {},
|
578 |
+
"source": [
|
579 |
+
"## Sort the patches into their respective classes"
|
580 |
+
]
|
581 |
+
},
|
582 |
+
{
|
583 |
+
"cell_type": "code",
|
584 |
+
"execution_count": 11,
|
585 |
+
"metadata": {},
|
586 |
+
"outputs": [],
|
587 |
+
"source": [
|
588 |
+
"# Set the path to the train and val folders\n",
|
589 |
+
"train_folder = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Classification/train\"\n",
|
590 |
+
"val_folder = \"/home/wfd/Desktop/Projet_M1/FineTuning/Data/Classification/val\"\n",
|
591 |
+
"\n",
|
592 |
+
"# Create new subdirectories for the labels in the train and val folders \n",
|
593 |
+
"for label in possible_labels:\n",
|
594 |
+
" os.makedirs(os.path.join(train_folder, label), exist_ok=True)\n",
|
595 |
+
" os.makedirs(os.path.join(val_folder, label), exist_ok=True)\n",
|
596 |
+
" \n",
|
597 |
+
"# Iterate over the rows in the df_combined dataframe\n",
|
598 |
+
"for index, row in df_combined.iterrows():\n",
|
599 |
+
" # Get the labels of the current row\n",
|
600 |
+
" labels = row[[\"M\", \"E\", \"S\", \"C\"]]\n",
|
601 |
+
" \n",
|
602 |
+
" # Get the name of the current patch\n",
|
603 |
+
" patch_name = row[\"Patch names\"]\n",
|
604 |
+
" \n",
|
605 |
+
" # Set the source path of the image\n",
|
606 |
+
" if patch_name in os.listdir(train_folder):\n",
|
607 |
+
" source_path = os.path.join(train_folder, patch_name)\n",
|
608 |
+
" elif patch_name in os.listdir(val_folder):\n",
|
609 |
+
" source_path = os.path.join(val_folder, patch_name)\n",
|
610 |
+
" \n",
|
611 |
+
" # Set the destination paths of the image\n",
|
612 |
+
" for label in labels:\n",
|
613 |
+
" if label in possible_labels:\n",
|
614 |
+
" if source_path.split(\"/\")[-2] == \"train\":\n",
|
615 |
+
" dest_path = os.path.join(train_folder, label)\n",
|
616 |
+
" else:\n",
|
617 |
+
" dest_path = os.path.join(val_folder, label)\n",
|
618 |
+
" if patch_name in os.listdir(dest_path):\n",
|
619 |
+
" pass\n",
|
620 |
+
" else:\n",
|
621 |
+
" shutil.copy(source_path, dest_path)"
|
622 |
+
]
|
623 |
+
},
|
624 |
+
{
|
625 |
+
"cell_type": "code",
|
626 |
+
"execution_count": 12,
|
627 |
+
"metadata": {},
|
628 |
+
"outputs": [],
|
629 |
+
"source": [
|
630 |
+
"# Delete all the images in the train and val folders that are not in subdirectories\n",
|
631 |
+
"for image in os.listdir(train_folder):\n",
|
632 |
+
" if os.path.isfile(os.path.join(train_folder, image)):\n",
|
633 |
+
" os.remove(os.path.join(train_folder, image))\n",
|
634 |
+
" \n",
|
635 |
+
"for image in os.listdir(val_folder):\n",
|
636 |
+
" if os.path.isfile(os.path.join(val_folder, image)):\n",
|
637 |
+
" os.remove(os.path.join(val_folder, image))"
|
638 |
+
]
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"cell_type": "code",
|
642 |
+
"execution_count": 13,
|
643 |
+
"metadata": {},
|
644 |
+
"outputs": [],
|
645 |
+
"source": [
|
646 |
+
"# Create folders for each type of lesion\n",
|
647 |
+
"lesion_folders = [\"M\", \"E\", \"S\", \"C\"]\n",
|
648 |
+
"for lesion in lesion_folders:\n",
|
649 |
+
" lesion_path = os.path.join(dataset_folder, lesion)\n",
|
650 |
+
" os.makedirs(lesion_path, exist_ok=True)\n",
|
651 |
+
" for step in [\"train\", \"val\"]:\n",
|
652 |
+
" os.makedirs(os.path.join(lesion_path, step), exist_ok=True)\n",
|
653 |
+
" if lesion == \"M\":\n",
|
654 |
+
" os.makedirs(os.path.join(lesion_path, step, \"nan_label\"), exist_ok=True)\n",
|
655 |
+
" os.makedirs(os.path.join(lesion_path, step, \"noM\"), exist_ok=True)\n",
|
656 |
+
" os.makedirs(os.path.join(lesion_path, step, \"yesM\"), exist_ok=True)\n",
|
657 |
+
" if lesion == \"E\":\n",
|
658 |
+
" os.makedirs(os.path.join(lesion_path, step, \"noE\"), exist_ok=True)\n",
|
659 |
+
" os.makedirs(os.path.join(lesion_path, step, \"yesE\"), exist_ok=True)\n",
|
660 |
+
" if lesion == \"S\":\n",
|
661 |
+
" os.makedirs(os.path.join(lesion_path, step, \"GGS\"), exist_ok=True)\n",
|
662 |
+
" os.makedirs(os.path.join(lesion_path, step, \"NoGS\"), exist_ok=True)\n",
|
663 |
+
" os.makedirs(os.path.join(lesion_path, step, \"SGS\"), exist_ok=True)\n",
|
664 |
+
" if lesion == \"C\":\n",
|
665 |
+
" os.makedirs(os.path.join(lesion_path, step, \"noC\"), exist_ok=True)\n",
|
666 |
+
" os.makedirs(os.path.join(lesion_path, step, \"yesC\"), exist_ok=True)\n",
|
667 |
+
" \n",
|
668 |
+
"# Move the images to the appropriate folders\n",
|
669 |
+
"lesion_labels_dict = {\n",
|
670 |
+
" \"M\": [\"nan_label\", \"noM\", \"yesM\"],\n",
|
671 |
+
" \"E\": [\"noE\", \"yesE\"],\n",
|
672 |
+
" \"S\": [\"GGS\", \"NoGS\", \"SGS\"],\n",
|
673 |
+
" \"C\": [\"noC\", \"yesC\"]\n",
|
674 |
+
"}\n",
|
675 |
+
"\n",
|
676 |
+
"# Add the possibility to empty the folders if they are not empty\n",
|
677 |
+
"for lesion in lesion_folders:\n",
|
678 |
+
" for step in [\"train\", \"val\"]:\n",
|
679 |
+
" for label in lesion_labels_dict[lesion]:\n",
|
680 |
+
" if len(os.listdir(os.path.join(dataset_folder, lesion, step, label))) > 0:\n",
|
681 |
+
" response = input(f\"The {lesion}/{step}/{label} folder is not empty. Do you want to empty the folder? (yes/no): \")\n",
|
682 |
+
" if response.lower() == \"yes\":\n",
|
683 |
+
" shutil.rmtree(os.path.join(dataset_folder, lesion, step, label))\n",
|
684 |
+
" os.makedirs(os.path.join(dataset_folder, lesion, step, label), exist_ok=True)\n",
|
685 |
+
" \n",
|
686 |
+
"# Move the images to the appropriate folders \n",
|
687 |
+
"for lesion in lesion_labels_dict.keys():\n",
|
688 |
+
" for step in [\"train\", \"val\"]:\n",
|
689 |
+
" for label in lesion_labels_dict[lesion]:\n",
|
690 |
+
" source_folder = os.path.join(dataset_folder, step, label)\n",
|
691 |
+
" destination_folder = os.path.join(dataset_folder, lesion, step, label)\n",
|
692 |
+
" for image in os.listdir(source_folder):\n",
|
693 |
+
" source_path = os.path.join(source_folder, image)\n",
|
694 |
+
" destination_path = os.path.join(destination_folder, image)\n",
|
695 |
+
" shutil.move(source_path, destination_path)\n",
|
696 |
+
" os.rmdir(source_folder)\n",
|
697 |
+
"\n",
|
698 |
+
"os.rmdir(train_folder)\n",
|
699 |
+
"os.rmdir(val_folder)"
|
700 |
+
]
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"cell_type": "code",
|
704 |
+
"execution_count": 14,
|
705 |
+
"metadata": {},
|
706 |
+
"outputs": [
|
707 |
+
{
|
708 |
+
"name": "stdout",
|
709 |
+
"output_type": "stream",
|
710 |
+
"text": [
|
711 |
+
"M: 416 images\n",
|
712 |
+
"E: 414 images\n",
|
713 |
+
"S: 465 images\n",
|
714 |
+
"C: 415 images\n"
|
715 |
+
]
|
716 |
+
}
|
717 |
+
],
|
718 |
+
"source": [
|
719 |
+
"# Give the amount of images by lesion\n",
|
720 |
+
"for lesion in lesion_folders:\n",
|
721 |
+
" num_images = 0\n",
|
722 |
+
" for step in [\"train\", \"val\"]:\n",
|
723 |
+
" for label in lesion_labels_dict[lesion]:\n",
|
724 |
+
" num_images += len(os.listdir(os.path.join(dataset_folder, lesion, step, label)))\n",
|
725 |
+
" print(f\"{lesion}: {num_images} images\")"
|
726 |
+
]
|
727 |
+
}
|
728 |
+
],
|
729 |
+
"metadata": {
|
730 |
+
"kernelspec": {
|
731 |
+
"display_name": "segmentation",
|
732 |
+
"language": "python",
|
733 |
+
"name": "python3"
|
734 |
+
},
|
735 |
+
"language_info": {
|
736 |
+
"codemirror_mode": {
|
737 |
+
"name": "ipython",
|
738 |
+
"version": 3
|
739 |
+
},
|
740 |
+
"file_extension": ".py",
|
741 |
+
"mimetype": "text/x-python",
|
742 |
+
"name": "python",
|
743 |
+
"nbconvert_exporter": "python",
|
744 |
+
"pygments_lexer": "ipython3",
|
745 |
+
"version": "3.10.14"
|
746 |
+
}
|
747 |
+
},
|
748 |
+
"nbformat": 4,
|
749 |
+
"nbformat_minor": 2
|
750 |
+
}
|
model_training.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|