LoneStriker commited on
Commit
7b3f169
·
verified ·
1 Parent(s): 2faba16

Upload folder using huggingface_hub

Browse files
README.md ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: other
3
+ license_name: llama3
4
+ license_link: https://huggingface.co/meta-llama/Meta-Llama-3-8B/blob/main/LICENSE
5
+ base_model: meta-llama/Meta-Llama-3-8B
6
+ tags:
7
+ - llama-3
8
+ datasets:
9
+ - jondurbin/airoboros-3.2
10
+ - bluemoon-fandom-1-1-rp-cleaned
11
+ - boolq
12
+ - jondurbin/gutenberg-dpo-v0.1
13
+ - LDJnr/Capybara
14
+ - jondurbin/cinematika-v0.1
15
+ - glaiveai/glaive-function-calling-v2
16
+ - grimulkan/LimaRP-augmented
17
+ - piqa
18
+ - Vezora/Tested-22k-Python-Alpaca
19
+ - mattpscott/airoboros-summarization
20
+ - unalignment/toxic-dpo-v0.2
21
+ ---
22
+
23
+ ### Overview
24
+
25
+ Another experimental model, tuend primarily from synthetic data generated by [airoboros](https://github.com/jondurbin/airoboros)
26
+
27
+ The name of this model is "llama-3-airoboros-70b-3.3" and it was built with llama-3 from Meta.
28
+
29
+ This is a fine-tune of llama-3-70b-instruct, and uses the lama-3 instruct chat template.
30
+
31
+ #### Highlights
32
+
33
+ A model built on the airoboros dataset, along with a few friends:
34
+
35
+ - https://huggingface.co/datasets/bluemoon-fandom-1-1-rp-cleaned
36
+ - https://huggingface.co/datasets/boolq
37
+ - https://huggingface.co/datasets/jondurbin/gutenberg-dpo-v0.1
38
+ - https://huggingface.co/datasets/LDJnr/Capybara
39
+ - https://huggingface.co/datasets/jondurbin/cinematika-v0.1
40
+ - https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2
41
+ - https://huggingface.co/datasets/grimulkan/LimaRP-augmented
42
+ - https://huggingface.co/datasets/piqa
43
+ - https://huggingface.co/datasets/Vezora/Tested-22k-Python-Alpaca
44
+ - https://huggingface.co/datasets/mattpscott/airoboros-summarization
45
+ - https://huggingface.co/datasets/unalignment/toxic-dpo-v0.2
46
+
47
+ ### Prompt format
48
+
49
+
50
+ This model uses the llama-3-instruct prompt template, and is provided in the tokenizer config. You can use the `apply_chat_template` method to accurate format prompts, e.g.:
51
+
52
+ ```python
53
+ import transformers
54
+ tokenizer = transformers.AutoTokenizer.from_pretrained("jondurbin/bugle-8b-v0.1", trust_remote_code=True)
55
+ chat = [
56
+ {"role": "system", "content": "You are Bob, a friendly AI assistant."},
57
+ {"role": "user", "content": "Hello, how are you?"},
58
+ {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
59
+ {"role": "user", "content": "I'd like to show off how chat templating works!"},
60
+ ]
61
+ print(tokenizer.apply_chat_template(chat, tokenize=False))
62
+
63
+ ### Helpful usage tips
64
+
65
+ #### Context obedient question answering
66
+
67
+ By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations.
68
+
69
+ The format for a closed-context prompt is as follows:
70
+ ```
71
+ BEGININPUT
72
+ BEGINCONTEXT
73
+ [key0: value0]
74
+ [key1: value1]
75
+ ... other metdata ...
76
+ ENDCONTEXT
77
+ [insert your text blocks here]
78
+ ENDINPUT
79
+ [add as many other blocks, in the exact same format]
80
+ BEGININSTRUCTION
81
+ [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.]
82
+ ENDINSTRUCTION
83
+ ```
84
+
85
+ It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up.
86
+
87
+ *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!*
88
+
89
+ I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it.
90
+ - `BEGININPUT` - denotes a new input block
91
+ - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block
92
+ - `ENDCONTEXT` - denotes the end of the metadata block for the current input
93
+ - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context.
94
+ - `ENDINPUT` - denotes the end of the current input block
95
+ - [repeat as many input blocks in this format as you want]
96
+ - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above.
97
+ - [instruction(s)]
98
+ - `ENDINSTRUCTION` - denotes the end of instruction set
99
+
100
+ It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to.
101
+
102
+ __Use a very low temperature!__
103
+
104
+ Here's a trivial, but important example to prove the point:
105
+ ```
106
+ BEGININPUT
107
+ BEGINCONTEXT
108
+ date: 2021-01-01
109
+ url: https://web.site/123
110
+ ENDCONTEXT
111
+ In a shocking turn of events, blueberries are now green, but will be sticking with the same name.
112
+ ENDINPUT
113
+ BEGININSTRUCTION
114
+ What color are bluberries? Source?
115
+ ENDINSTRUCTION
116
+ ```
117
+
118
+ And the response:
119
+ ```
120
+ Blueberries are now green.
121
+ Source:
122
+ date: 2021-01-01
123
+ url: https://web.site/123
124
+ ```
125
+
126
+ #### Summarization
127
+
128
+ 500 samples have been included from [this dataset](https://huggingface.co/datasets/mattpscott/airoboros-summarization), using the same format as contextual question answering, for example:
129
+
130
+ ```
131
+ BEGININPUT
132
+ {text to summarize}
133
+ ENDINPUT
134
+ BEGININSTRUCTION
135
+ Summarize the input in around 130 words.
136
+ ENDINSTRUCTION
137
+ ```
138
+
139
+ #### Getting longer responses
140
+
141
+ You can use a few techniques to get longer responses.
142
+
143
+ Detailed prompts, with explicit instruction for word count:
144
+ ```
145
+ Please compose a narrative set in the heart of an ancient library, steeped in the scent of old parchment and ink. The protagonist should be a young scholar who is dedicated to studying the art of storytelling and its evolution throughout history. In her pursuit of knowledge, she stumbles upon a forgotten tome that seems to possess an unusual aura. This book has the ability to bring stories to life, literally manifesting characters and scenarios from within its pages into reality.
146
+
147
+ The main character must navigate through various epochs of storytelling - from oral traditions of tribal societies, through medieval minstrels' tales, to modern-day digital narratives - as they come alive around her. Each era presents its unique challenges and lessons about the power and impact of stories on human civilization.
148
+
149
+ One such character could be a sentient quill pen, who was once used by renowned authors of yesteryears and now holds their wisdom and experiences. It becomes her mentor, guiding her through this journey with witty remarks and insightful commentary.
150
+
151
+ Ensure that your tale encapsulates the thrill of adventure, the beauty of learning, and the profound connection between humans and their stories. All characters involved should be non-human entities. Feel free to explore creative liberties but maintain the mentioned elements.
152
+
153
+ Your response should be approximately 2300 words.
154
+ ```
155
+
156
+ Or, a simpler example:
157
+ ```
158
+ Please create a long, detailed story about a dragon in an old growth forest who, for some reason, begins speaking the words of the source code of linux.
159
+ ```
160
+
161
+ There are a few examples of next chapter completion as well, e.g.:
162
+ ```
163
+ Write the next chapter of a historical fiction novel set in Paris during the 20th century.
164
+
165
+ Here's a summary of the previous chapter:
166
+ In the vibrant city of Paris, amid the tumultuous changes of the 20th century, our protagonist Margot, an aspiring fashion designer, has just secured an apprenticeship at a prestigious couture house. She meets Lucien, a charming journalist who covers the fashion industry. Together they navigate the ever-changing world of fashion and society, uncovering secrets that reveal the intricate links between style, politics, and culture. As the chapter concludes, they decide to delve deeper into the hidden corners of the fashion world to unravel its mysteries.
167
+
168
+ Requirements for the next chapter:
169
+
170
+ 1. Character Development of Margot and Lucien:
171
+ - Margot's Evolution: Unfold more about Margot's past, her dreams of revolutionizing fashion, and her struggle to establish herself in a male-dominated industry. Illustrate her growing expertise, innovative ideas, and increasing dependence on Lucien.
172
+ - Lucien's Complexity: Introduce uncertainties surrounding Lucien's background and real motives. Increase suspense by suggesting undisclosed information he possesses, while also highlighting his wit and perceptiveness.
173
+
174
+ 2. Exploration of Paris and the Couture House:
175
+ - Paris: Elaborate their journey through the bustling streets of Paris, including encounters with iconic figures, social unrest, and relics from different eras of French history.
176
+ - The Couture House: Expand on the grandeur of the couture house they work in, filled with artistic masterpieces, intense competition, and cryptic notes hinting at a scandalous past.
177
+
178
+ 3. Emergence of the Subplot: The Lost Collection:
179
+ - Discovery: Have Margot and Lucien stumble upon a secret vault containing a lost collection designed before World War II, raising new questions about the previous owner and the influence of war on fashion.
180
+ - Revelation: Capture their shock as they realize the designs were plagiarized, the potential repercussions, and the opportunities it presents for Margot's career.
181
+ - Twist: End with a twist that suggests there are other stolen collections across Paris, setting up their new mission.
182
+
183
+
184
+ Your response should be approximately 650 words.
185
+ ```
186
+
187
+ #### Coding
188
+
189
+ You can ask for fairly complex coding instructions with multiple criteria, e.g.:
190
+
191
+ ```
192
+ Create a python application with the following requirements:
193
+ - Asyncio FastAPI webserver
194
+ - ping endpoint that returns the current date in JSON format
195
+ - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate
196
+ ```
197
+
198
+ Or inline criteria:
199
+
200
+ ```
201
+ Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values.
202
+ ```
203
+
204
+ You can also optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.:
205
+
206
+ ```
207
+ Write a websocket application in node.js. PLAINFORMAT
208
+ ```
209
+
210
+ #### Agent/function calling
211
+
212
+ The dataset includes many examples of function/args generation based on input criteria. This is somewhat similar to the OpenAI function calling, but the output is either JSON or YAML.
213
+
214
+ Example prompt:
215
+ ```
216
+ As an AI assistant, please select the most suitable function and parameters from the list of available functions below, based on the user's input. Provide your response in JSON format.
217
+
218
+ Input: I want to know how many times 'Python' is mentioned in my text file.
219
+
220
+ Available functions:
221
+ file_analytics:
222
+ description: This tool performs various operations on a text file.
223
+ params:
224
+ action: The operation we want to perform on the data, such as "count_occurrences", "find_line", etc.
225
+ filters:
226
+ keyword: The word or phrase we want to search for.
227
+ ```
228
+
229
+ Response:
230
+ ```json
231
+ {
232
+ "function": "file_analytics",
233
+ "params": {
234
+ "action": "count_occurrences",
235
+ "filters": {
236
+ "keyword": "Python"
237
+ }
238
+ }
239
+ }
240
+ ```
241
+
242
+ #### Chain-of-thought
243
+
244
+ You can ask for several possible responses to a given problem, with a ranking and final answer selection.
245
+
246
+ Example prompt:
247
+
248
+ ```
249
+ A group of people decide to play a round-robin tournament where every player plays every other player exactly once. If a total of 45 games were played, how many players participated in the tournament? Offer several potential answers, rank them according to mathematical logic, and pick the most feasible one.
250
+ ```
251
+
252
+ Example response:
253
+ ```
254
+ Solution 1:
255
+ In a round-robin tournament, each player plays every other player exactly once. This means that the total number of games played is equal to the combination of all players taken two at a time (since a game involves two players).
256
+
257
+ The formula for combinations is nC2 = n(n-1)/2, where n is the total number of players. We know that nC2 equals 45 (the total number of games), so we can set up the equation as follows:
258
+
259
+ n(n-1)/2 = 45
260
+
261
+ Solving this equation gives us n=10.
262
+
263
+ Final answer: There were 10 players in the tournament.
264
+
265
+ Solution 2:
266
+ Another way to approach this problem is by using the concept of triangular numbers. Triangular numbers are a sequence of numbers where each number can be represented as a triangle with dots. The nth triangular number is given by the sum of the first n natural numbers.
267
+
268
+ If we consider each game as a dot and each player as a side of the triangle, then the total number of games (45) would correspond to the 9th triangular number because 1+2+3+4+5+6+7+8+9=45. However, since each side of the triangle represents a player, and there's one more player than sides in our model (because the last player has no one left to play against), we need to add one more to get the total number of players.
269
+
270
+ Final answer: There were 10 players in the tournament.
271
+
272
+ Solution 3:
273
+ We could also use trial and error to solve this problem. Starting from a small number of players, we calculate how many games would be played in a round-robin tournament until we reach 45 games. For example, with 2 players, only 1 game is played; with 3 players, 3 games are played; with 4 players, 6 games are played, and so on. Continuing this process, we find that with 10 players, 45 games are played.
274
+
275
+ Final answer: There were 10 players in the tournament.
276
+
277
+ Ranking of solutions from best to worst:
278
+ 1. Solution 1: This solution uses direct mathematical reasoning based on the properties of a round-robin tournament and solves an equation to find the answer.
279
+ 2. Solution 2: This solution uses the concept of triangular numbers which requires additional steps and knowledge beyond the immediate problem context, but still arrives at the correct answer.
280
+ 3. Solution 3: This solution relies on trial and error, which is less efficient and reliable than the other methods, but it eventually gets to the right answer.
281
+
282
+ Best and final answer: There were 10 players in the tournament.
283
+ ```
284
+
285
+ #### reWOO style execution planning
286
+
287
+ The model now supports execution planning for complex instructions that would require making use of several tools. The output is just the plan, you must implement a mechanism to parse the output and actually call the functions!
288
+
289
+ Example prompt:
290
+ ```
291
+ Please construct a systematic plan to generate an optimal response to the user instruction, utilizing a set of provided tools. Each plan will correspond to an evidence value, which will be the output of one of the available functions given an input string
292
+ that could be the user's question, one or more prior evidence values, or a combination of both.
293
+
294
+ Here are the tools available to be called:
295
+ DuckDuckGo[input]: Tool that enables the user to search for information using the DuckDuckGo search engine. This tool is helpful in locating a suitable list of sites that may contain the answer to the user's query. It does not directly answer the question but finds a list of sites that might have the answer.
296
+ TextScraper[input]: Load one or more websites from the input string containing newline delimited links, where input is one or more links, and produces plain text output containing the content of the links.
297
+ HyperlinkExtractor[input]: Extract links from plain text and produces a plain text, newline delimited response of links.
298
+ KnowledgeModel[input]: Question answering language model, particularly useful in answering questions based on an input passage of text. The input must be a text question that references an :evidence[n]: variable, e.g. What color is the cat, given :evidence1:?
299
+
300
+ The output should be in format:
301
+ Plan: [first action to take based on input question]
302
+ :evidence0: = [function to call with input parameter]
303
+ Plan: [next action to take, based on result of :evidence0:]
304
+ :evidence1: = [next function to call and input parameter, which may include reference to previous evidence, e.g. "Given context :evidence0"]
305
+ ...
306
+ Answer: [:evidence[n]: containing the final answer.]
307
+
308
+ Question: Who won the Nobel Prize in Literature in 2020 and what is their most famous work?
309
+ ```
310
+
311
+ Response:
312
+ ```
313
+ Plan: Begin by conducting a web search to find out who won the Nobel Prize in Literature in 2020.
314
+ :evidence0: = DuckDuckGo[Nobel Prize in Literature 2020 winner]
315
+ Plan: Utilize the KnowledgeModel to interpret the search results and find the name of the laureate.
316
+ :evidence1: = KnowledgeModel[Who won the Nobel Prize in Literature in 2020, given :evidence0:?]
317
+ Plan: Conduct another web search to find the most famous work of the identified laureate.
318
+ :evidence2: = DuckDuckGo[Most famous work of :evidence1:]
319
+ Plan: Extract the relevant links from the DuckDuckGo search results for a more focused search.
320
+ :evidence3: = HyperlinkExtractor[:evidence2:]
321
+ Plan: Use the TextScraper tool to extract information from the relevant links.
322
+ :evidence4: = TextScraper[:evidence3:]
323
+ Plan: Finally, utilize the KnowledgeModel to identify and summarize the most famous work of the laureate from the extracted information.
324
+ :evidence5: = KnowledgeModel[What is the most famous work of :evidence1:, given :evidence4:?]
325
+ Answer: :evidence5:
326
+ ```
327
+
328
+ For this to be useful, you'd have to parse the output plan text, and implement/call each of the functions. This is just pseudo-code, completely untested off the top of my head, and obviously would requiring full implementation + hardening:
329
+
330
+ ```python
331
+ import re
332
+ import requests
333
+
334
+ def inject_context(input_text, **context):
335
+ for ref in set(re.findall(r"(:evidence[0-9]+:)", input_text, re.I)):
336
+ input_text = input_text.replace(ref, context.get(ref, ""))
337
+ return input_text
338
+
339
+ def duckduckgo(input_text, **context):
340
+ search_string = inject_context(input_text, **context)
341
+ ... search via duck duck go using search_string
342
+ ... return text content
343
+
344
+ def link_extractor(input_text, **context):
345
+ input_text = inject_context(input_text, **context)
346
+ return "\n".join(list(set(re.findall(r"(https?://[^\s]+?\.?)", input_text, re.I))))
347
+
348
+ def scrape(input_text, **context):
349
+ input_text = inject_context(input_text, **context)
350
+ text = []
351
+ for link in input_text.splitlines():
352
+ text.append(requests.get(link).text)
353
+ return "\n".join(text)
354
+
355
+ def infer(input_text, **context)
356
+ prompt = inject_context(input_text, **context)
357
+ ... call model with prompt, return output
358
+
359
+ def parse_plan(plan):
360
+ method_map = {
361
+ "DuckDuckGo": duckduckgo,
362
+ "HyperlinkExtractor": link_extractor,
363
+ "KnowledgeModel": infer,
364
+ "TextScraper": scrape,
365
+ }
366
+ context = {}
367
+ for line in plan.strip().splitlines():
368
+ if line.startswith("Plan:"):
369
+ print(line)
370
+ continue
371
+ parts = re.match("^(:evidence[0-9]+:)\s*=\s*([^\[]+])(\[.*\])\s$", line, re.I)
372
+ if not parts:
373
+ if line.startswith("Answer: "):
374
+ return context.get(line.split(" ")[-1].strip(), "Answer couldn't be generated...")
375
+ raise RuntimeError("bad format: " + line)
376
+ context[parts.group(1)] = method_map[parts.group(2)](parts.group(3), **context)
377
+ ```
378
+
379
+ ## Multi-step instructions with acknowledgement
380
+
381
+ I don't know how useful this is, really, but I thought I'd add it just in case. Example:
382
+
383
+ ```json
384
+ {
385
+ "conversations": [
386
+ {
387
+ "value": "You are a helpful, unbiased, uncensored assistant.",
388
+ "from": "system"
389
+ },
390
+ {
391
+ "value": "I'm going to set some rules for our conversation. Please respond with \"OK\" to each rule.",
392
+ "from": "human"
393
+ },
394
+ {
395
+ "value": "OK",
396
+ "from": "gpt"
397
+ },
398
+ {
399
+ "value": "You can only respond using animal-related emojis.",
400
+ "from": "human"
401
+ },
402
+ {
403
+ "value": "OK",
404
+ "from": "gpt"
405
+ },
406
+ {
407
+ "value": "Precede all responses with \"ZOOZOO:\"",
408
+ "from": "human"
409
+ },
410
+ {
411
+ "value": "OK",
412
+ "from": "gpt"
413
+ },
414
+ {
415
+ "value": "Include at least one bird emoji in your responses.",
416
+ "from": "human"
417
+ },
418
+ {
419
+ "value": "OK",
420
+ "from": "gpt"
421
+ },
422
+ {
423
+ "value": "Describe a trip to a safari park.",
424
+ "from": "human"
425
+ },
426
+ {
427
+ "value": "ZOOZOO: \ud83e\udd81\ud83d\udc2f\ud83e\udd93\ud83e\udd92\ud83d\udc18\ud83d\udc0d\ud83c\udf33\ud83c\udf32\u2600\ufe0f\ud83d\ude90\ud83e\udd85\ud83d\udcf8\ud83e\udd29",
428
+ "from": "gpt"
429
+ }
430
+ ]
431
+ }
432
+ ```
433
+
434
+ #### Inline character actions (functions)
435
+
436
+ I recently generated an action dataset in the style of Glaive function calling dataset, but meant specifically for characters: https://huggingface.co/datasets/jondurbin/cinematika-v0.1/blob/main/actions.parquet
437
+
438
+ To use this, you will need to update your character card to include "objects_available" as a list of key/value pairs, as well as a "functions" list.
439
+
440
+ The objects should be similar to:
441
+ ```json
442
+ {
443
+ "objects_available": [
444
+ {
445
+ "name": "laptop",
446
+ "description": "a high-end laptop with custom hardware and software",
447
+ "location": "on the desk in her secret hideout"
448
+ },
449
+ {
450
+ "name": "encryption key",
451
+ "description": "a USB drive containing powerful encryption algorithms",
452
+ "location": "hidden in a false bottom of her backpack"
453
+ },
454
+ {
455
+ "name": "scanner",
456
+ "description": "a compact device used for intercepting and decoding wireless signals",
457
+ "location": "clipped to her belt, always within reach"
458
+ },
459
+ {
460
+ "name": "VR headset",
461
+ "description": "a virtual reality headset used for immersive hacking and data visualization",
462
+ "location": "hanging on a hook near her computer setup"
463
+ },
464
+ {
465
+ "name": "energy drink",
466
+ "description": "a can of her favorite energy drink, always on hand for long hacking sessions",
467
+ "location": "next to her laptop, ready to be opened"
468
+ }
469
+ ]
470
+ }
471
+ ```
472
+
473
+ And the functions:
474
+ ```json
475
+ {
476
+ "functions": [
477
+ {
478
+ "name": "move_to",
479
+ "description": "move to a specified location",
480
+ "parameters": {
481
+ "location": {
482
+ "type": "string",
483
+ "description": "the location to move to"
484
+ }
485
+ }
486
+ },
487
+ {
488
+ "name": "pick_up",
489
+ "description": "pick up an object",
490
+ "parameters": {
491
+ "object": {
492
+ "type": "string",
493
+ "description": "the object to pick up"
494
+ }
495
+ }
496
+ },
497
+ {
498
+ "name": "put_down",
499
+ "description": "put down an object",
500
+ "parameters": {
501
+ "object": {
502
+ "type": "string",
503
+ "description": "the object to put down"
504
+ },
505
+ "location": {
506
+ "type": "string",
507
+ "description": "the location to put the object down"
508
+ }
509
+ }
510
+ },
511
+ {
512
+ "name": "hack",
513
+ "description": "attempt to hack into a computer system",
514
+ "parameters": {
515
+ "system": {
516
+ "type": "string",
517
+ "description": "the computer system to hack"
518
+ }
519
+ }
520
+ },
521
+ {
522
+ "name": "decode",
523
+ "description": "decode an encrypted message or file",
524
+ "parameters": {
525
+ "message": {
526
+ "type": "string",
527
+ "description": "the encrypted message or file to decode"
528
+ }
529
+ }
530
+ },
531
+ {
532
+ "name": "scan",
533
+ "description": "scan for wireless signals and network vulnerabilities",
534
+ "parameters": {}
535
+ },
536
+ {
537
+ "name": "analyze",
538
+ "description": "analyze data for patterns and anomalies",
539
+ "parameters": {
540
+ "data": {
541
+ "type": "string",
542
+ "description": "the data to analyze"
543
+ }
544
+ }
545
+ },
546
+ {
547
+ "name": "hide",
548
+ "description": "quickly hide to avoid detection",
549
+ "parameters": {
550
+ "location": {
551
+ "type": "string",
552
+ "description": "the location to hide"
553
+ }
554
+ }
555
+ }
556
+ ]
557
+ }
558
+ ```
559
+
560
+ This just becomes part of your character card/system prompt. Then, when you chat with the character and illicit a response that would make use of objects/functions/actions, it should be included as such:
561
+
562
+ ```
563
+ prompt: I've heard rumors about a major corporation with a hidden agenda. Do you think you could hack into their system and find out what they're up to?
564
+ response: I've had my suspicions about them for a while now. Let me see what I can uncover.
565
+ <|begin_func|>{"name": "move_to", "parameters": {"location": "the desk in her secret hideout"}}<|end_func|>
566
+ <|begin_func|>{"name": "pick_up", "parameters": {"object": "laptop"}}<|end_func|>
567
+ Time to put my skills to the test.
568
+ <|begin_func|>{"name": "hack", "parameters": {"system": "Megacorp X's mainframe"}}<|end_func|>
569
+ Their firewalls are tough, but not unbreakable. I'm in. Let's see what secrets they're hiding...
570
+ <|begin_func|>{"name": "analyze", "parameters": {"data": "encrypted files"}}<|end_func|>
571
+ Interesting. It looks like they've been conducting illegal experiments and covering up the evidence.
572
+ I'll need to dig deeper to find the proof.
573
+ ```
574
+
575
+ Experiment, and find out what works and doesn't.
576
+
577
+ ### Massed Compute Virtual Machine
578
+
579
+ [Massed Compute](https://massedcompute.com/?utm_source=huggingface&utm_creative_format=model_card&utm_content=creator_jon) has created a Virtual Machine (VM) pre-loaded with TGI and Text Generation WebUI.
580
+
581
+ 1) For this model, [create an account](https://bit.ly/jon-durbin) in Massed Compute. When renting a Virtual Machine use the code 'JonDurbin' for 50% your rental.
582
+ 2) After you created your account update your billing and navigate to the deploy page.
583
+ 3) Select the following
584
+ - GPU Type: A6000
585
+ - GPU Quantity: 2
586
+ - Category: Creator
587
+ - Image: Jon Durbin
588
+ - Coupon Code: JonDurbin
589
+ 4) Deploy the VM!
590
+ 5) Navigate to 'Running Instances' to retrieve instructions to login to the VM
591
+ 6) Once inside the VM, open the terminal and run `volume=$PWD/data`
592
+ 7) Run `model=jondurbin/airoboros-34b-3.3`
593
+ 8) `sudo docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:1.3 --model-id $model`
594
+ 9) The model will take some time to load...
595
+ 10) Once loaded the model will be available on port 8080
596
+
597
+ For assistance with the VM join the [Massed Compute Discord Server](https://discord.gg/Mj4YMQY3DA)
598
+
599
+ ### Latitude.sh
600
+
601
+ [Latitude](https://www.latitude.sh/r/4BBD657C) has h100 instances available (as of today, 2024-02-08) for $3/hr!
602
+
603
+ They have a few blueprints available for testing LLMs, but a single h100 should be plenty to run this model with 8k ctx.
604
+
605
+ ## Support me
606
+
607
+ - https://bmc.link/jondurbin
608
+ - ETH 0xce914eAFC2fe52FdceE59565Dd92c06f776fcb11
609
+ - BTC bc1qdwuth4vlg8x37ggntlxu5cjfwgmdy5zaa7pswf
610
+
611
+ ### Licence and usage restrictions
612
+
613
+ The airoboros models are built on top of multiple base models, each with their own license/restrictions.
614
+
615
+ The fine-tuning data was mostly generated by OpenAI API calls to gpt-4, via [airoboros](https://github.com/jondurbin/airoboros)
616
+
617
+ The ToS for OpenAI API usage has a clause preventing the output from being used to train a model that __competes__ with OpenAI
618
+
619
+ - what does *compete* actually mean here?
620
+ - these small open source models will not produce output anywhere near the quality of gpt-4, or even gpt-3.5, so I can't imagine this could credibly be considered competing in the first place
621
+ - if someone else uses the dataset to do the same, they wouldn't necessarily be violating the ToS because they didn't call the API, so I don't know how that works
622
+ - the training data used in essentially all large language models includes a significant amount of copyrighted or otherwise non-permissive licensing in the first place
623
+ - other work using the self-instruct method, e.g. the original here: https://github.com/yizhongw/self-instruct released the data and model as apache-2
624
+
625
+ I am purposingly leaving this license ambiguous (other than the fact you must comply with the Meta original license for llama-2) because I am not a lawyer and refuse to attempt to interpret all of the terms accordingly.
626
+
627
+ Your best bet is probably to avoid using this commercially due to the OpenAI API usage.
628
+
629
+ Either way, by using this model, you agree to completely indemnify me.
630
+
631
+ You must also agree to all of the terms in the origina llama-3 license.
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "llama-3-airoboros-70b-3.3",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 128000,
9
+ "eos_token_id": 128001,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 8192,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 28672,
14
+ "max_position_embeddings": 8192,
15
+ "model_type": "llama",
16
+ "num_attention_heads": 64,
17
+ "num_hidden_layers": 80,
18
+ "num_key_value_heads": 8,
19
+ "pretraining_tp": 1,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "rope_theta": 500000.0,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.40.1",
26
+ "use_cache": true,
27
+ "vocab_size": 128256,
28
+ "quantization_config": {
29
+ "quant_method": "exl2",
30
+ "version": "0.0.20",
31
+ "bits": 2.4,
32
+ "head_bits": 6,
33
+ "calibration": {
34
+ "rows": 100,
35
+ "length": 2048,
36
+ "dataset": "(default)"
37
+ }
38
+ }
39
+ }
generation_config.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 128000,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128009
7
+ ],
8
+ "max_length": 4096,
9
+ "temperature": 0.6,
10
+ "top_p": 0.9,
11
+ "transformers_version": "4.40.1"
12
+ }
model.safetensors.index.json ADDED
@@ -0,0 +1,730 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 141107412992
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00037-of-00037.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00037.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00037.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00037.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00037.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00037.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00037.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00037.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00037.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00037.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00037.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00002-of-00037.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00002-of-00037.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00002-of-00037.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00002-of-00037.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00002-of-00037.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00037.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00002-of-00037.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00037.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00037.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00006-of-00037.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00006-of-00037.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00006-of-00037.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00006-of-00037.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00006-of-00037.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00006-of-00037.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00006-of-00037.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00006-of-00037.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00006-of-00037.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00006-of-00037.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00006-of-00037.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00006-of-00037.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00006-of-00037.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00006-of-00037.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00006-of-00037.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00006-of-00037.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00006-of-00037.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00006-of-00037.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00007-of-00037.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00007-of-00037.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00007-of-00037.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00007-of-00037.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00007-of-00037.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00006-of-00037.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00006-of-00037.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00006-of-00037.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00006-of-00037.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00007-of-00037.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00007-of-00037.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00007-of-00037.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00007-of-00037.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00007-of-00037.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00007-of-00037.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00007-of-00037.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00007-of-00037.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00007-of-00037.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00008-of-00037.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00008-of-00037.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00007-of-00037.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00008-of-00037.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00008-of-00037.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00007-of-00037.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00007-of-00037.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00007-of-00037.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00007-of-00037.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00008-of-00037.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00008-of-00037.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00008-of-00037.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00008-of-00037.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00008-of-00037.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00008-of-00037.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00008-of-00037.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00008-of-00037.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00008-of-00037.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00009-of-00037.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00009-of-00037.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00008-of-00037.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00008-of-00037.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00009-of-00037.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00008-of-00037.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00008-of-00037.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00008-of-00037.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00008-of-00037.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00009-of-00037.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00009-of-00037.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00009-of-00037.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00009-of-00037.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00009-of-00037.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00009-of-00037.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00009-of-00037.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00009-of-00037.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00009-of-00037.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00009-of-00037.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00009-of-00037.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00009-of-00037.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00009-of-00037.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00009-of-00037.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00009-of-00037.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00009-of-00037.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00009-of-00037.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00009-of-00037.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00010-of-00037.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00010-of-00037.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00010-of-00037.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00010-of-00037.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00010-of-00037.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00010-of-00037.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00010-of-00037.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00010-of-00037.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00010-of-00037.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00002-of-00037.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00002-of-00037.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00002-of-00037.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00002-of-00037.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00002-of-00037.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00002-of-00037.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00002-of-00037.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00002-of-00037.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00002-of-00037.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00010-of-00037.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00010-of-00037.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00010-of-00037.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00010-of-00037.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00010-of-00037.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00010-of-00037.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00010-of-00037.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00010-of-00037.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00010-of-00037.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00011-of-00037.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00011-of-00037.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00011-of-00037.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00011-of-00037.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00011-of-00037.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00010-of-00037.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00010-of-00037.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00010-of-00037.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00010-of-00037.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00011-of-00037.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00011-of-00037.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00011-of-00037.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00011-of-00037.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00011-of-00037.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00011-of-00037.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00011-of-00037.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00011-of-00037.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00011-of-00037.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00012-of-00037.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00012-of-00037.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00011-of-00037.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00012-of-00037.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00012-of-00037.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00011-of-00037.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00011-of-00037.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00011-of-00037.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00011-of-00037.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00012-of-00037.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00012-of-00037.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00012-of-00037.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00012-of-00037.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00012-of-00037.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00012-of-00037.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00012-of-00037.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00012-of-00037.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00012-of-00037.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00013-of-00037.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00013-of-00037.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00012-of-00037.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00012-of-00037.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00013-of-00037.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00012-of-00037.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00012-of-00037.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00012-of-00037.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00012-of-00037.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00013-of-00037.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00013-of-00037.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00013-of-00037.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00013-of-00037.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00013-of-00037.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00013-of-00037.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00013-of-00037.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00013-of-00037.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00013-of-00037.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00013-of-00037.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00013-of-00037.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00013-of-00037.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00013-of-00037.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00013-of-00037.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00013-of-00037.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00013-of-00037.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00013-of-00037.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00013-of-00037.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00014-of-00037.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00014-of-00037.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00014-of-00037.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00014-of-00037.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00014-of-00037.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00014-of-00037.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00014-of-00037.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00014-of-00037.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00014-of-00037.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00014-of-00037.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00014-of-00037.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00014-of-00037.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00014-of-00037.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00014-of-00037.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00014-of-00037.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00014-of-00037.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00014-of-00037.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00014-of-00037.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00003-of-00037.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00003-of-00037.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00003-of-00037.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00003-of-00037.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00003-of-00037.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00002-of-00037.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00002-of-00037.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00002-of-00037.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00002-of-00037.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00015-of-00037.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00015-of-00037.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00015-of-00037.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00015-of-00037.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00015-of-00037.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00014-of-00037.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00014-of-00037.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00014-of-00037.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00014-of-00037.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00015-of-00037.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00015-of-00037.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00015-of-00037.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00015-of-00037.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00015-of-00037.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00015-of-00037.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00015-of-00037.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00015-of-00037.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00015-of-00037.safetensors",
242
+ "model.layers.32.input_layernorm.weight": "model-00016-of-00037.safetensors",
243
+ "model.layers.32.mlp.down_proj.weight": "model-00016-of-00037.safetensors",
244
+ "model.layers.32.mlp.gate_proj.weight": "model-00015-of-00037.safetensors",
245
+ "model.layers.32.mlp.up_proj.weight": "model-00016-of-00037.safetensors",
246
+ "model.layers.32.post_attention_layernorm.weight": "model-00016-of-00037.safetensors",
247
+ "model.layers.32.self_attn.k_proj.weight": "model-00015-of-00037.safetensors",
248
+ "model.layers.32.self_attn.o_proj.weight": "model-00015-of-00037.safetensors",
249
+ "model.layers.32.self_attn.q_proj.weight": "model-00015-of-00037.safetensors",
250
+ "model.layers.32.self_attn.v_proj.weight": "model-00015-of-00037.safetensors",
251
+ "model.layers.33.input_layernorm.weight": "model-00016-of-00037.safetensors",
252
+ "model.layers.33.mlp.down_proj.weight": "model-00016-of-00037.safetensors",
253
+ "model.layers.33.mlp.gate_proj.weight": "model-00016-of-00037.safetensors",
254
+ "model.layers.33.mlp.up_proj.weight": "model-00016-of-00037.safetensors",
255
+ "model.layers.33.post_attention_layernorm.weight": "model-00016-of-00037.safetensors",
256
+ "model.layers.33.self_attn.k_proj.weight": "model-00016-of-00037.safetensors",
257
+ "model.layers.33.self_attn.o_proj.weight": "model-00016-of-00037.safetensors",
258
+ "model.layers.33.self_attn.q_proj.weight": "model-00016-of-00037.safetensors",
259
+ "model.layers.33.self_attn.v_proj.weight": "model-00016-of-00037.safetensors",
260
+ "model.layers.34.input_layernorm.weight": "model-00017-of-00037.safetensors",
261
+ "model.layers.34.mlp.down_proj.weight": "model-00017-of-00037.safetensors",
262
+ "model.layers.34.mlp.gate_proj.weight": "model-00016-of-00037.safetensors",
263
+ "model.layers.34.mlp.up_proj.weight": "model-00016-of-00037.safetensors",
264
+ "model.layers.34.post_attention_layernorm.weight": "model-00017-of-00037.safetensors",
265
+ "model.layers.34.self_attn.k_proj.weight": "model-00016-of-00037.safetensors",
266
+ "model.layers.34.self_attn.o_proj.weight": "model-00016-of-00037.safetensors",
267
+ "model.layers.34.self_attn.q_proj.weight": "model-00016-of-00037.safetensors",
268
+ "model.layers.34.self_attn.v_proj.weight": "model-00016-of-00037.safetensors",
269
+ "model.layers.35.input_layernorm.weight": "model-00017-of-00037.safetensors",
270
+ "model.layers.35.mlp.down_proj.weight": "model-00017-of-00037.safetensors",
271
+ "model.layers.35.mlp.gate_proj.weight": "model-00017-of-00037.safetensors",
272
+ "model.layers.35.mlp.up_proj.weight": "model-00017-of-00037.safetensors",
273
+ "model.layers.35.post_attention_layernorm.weight": "model-00017-of-00037.safetensors",
274
+ "model.layers.35.self_attn.k_proj.weight": "model-00017-of-00037.safetensors",
275
+ "model.layers.35.self_attn.o_proj.weight": "model-00017-of-00037.safetensors",
276
+ "model.layers.35.self_attn.q_proj.weight": "model-00017-of-00037.safetensors",
277
+ "model.layers.35.self_attn.v_proj.weight": "model-00017-of-00037.safetensors",
278
+ "model.layers.36.input_layernorm.weight": "model-00017-of-00037.safetensors",
279
+ "model.layers.36.mlp.down_proj.weight": "model-00017-of-00037.safetensors",
280
+ "model.layers.36.mlp.gate_proj.weight": "model-00017-of-00037.safetensors",
281
+ "model.layers.36.mlp.up_proj.weight": "model-00017-of-00037.safetensors",
282
+ "model.layers.36.post_attention_layernorm.weight": "model-00017-of-00037.safetensors",
283
+ "model.layers.36.self_attn.k_proj.weight": "model-00017-of-00037.safetensors",
284
+ "model.layers.36.self_attn.o_proj.weight": "model-00017-of-00037.safetensors",
285
+ "model.layers.36.self_attn.q_proj.weight": "model-00017-of-00037.safetensors",
286
+ "model.layers.36.self_attn.v_proj.weight": "model-00017-of-00037.safetensors",
287
+ "model.layers.37.input_layernorm.weight": "model-00018-of-00037.safetensors",
288
+ "model.layers.37.mlp.down_proj.weight": "model-00018-of-00037.safetensors",
289
+ "model.layers.37.mlp.gate_proj.weight": "model-00018-of-00037.safetensors",
290
+ "model.layers.37.mlp.up_proj.weight": "model-00018-of-00037.safetensors",
291
+ "model.layers.37.post_attention_layernorm.weight": "model-00018-of-00037.safetensors",
292
+ "model.layers.37.self_attn.k_proj.weight": "model-00018-of-00037.safetensors",
293
+ "model.layers.37.self_attn.o_proj.weight": "model-00018-of-00037.safetensors",
294
+ "model.layers.37.self_attn.q_proj.weight": "model-00018-of-00037.safetensors",
295
+ "model.layers.37.self_attn.v_proj.weight": "model-00018-of-00037.safetensors",
296
+ "model.layers.38.input_layernorm.weight": "model-00018-of-00037.safetensors",
297
+ "model.layers.38.mlp.down_proj.weight": "model-00018-of-00037.safetensors",
298
+ "model.layers.38.mlp.gate_proj.weight": "model-00018-of-00037.safetensors",
299
+ "model.layers.38.mlp.up_proj.weight": "model-00018-of-00037.safetensors",
300
+ "model.layers.38.post_attention_layernorm.weight": "model-00018-of-00037.safetensors",
301
+ "model.layers.38.self_attn.k_proj.weight": "model-00018-of-00037.safetensors",
302
+ "model.layers.38.self_attn.o_proj.weight": "model-00018-of-00037.safetensors",
303
+ "model.layers.38.self_attn.q_proj.weight": "model-00018-of-00037.safetensors",
304
+ "model.layers.38.self_attn.v_proj.weight": "model-00018-of-00037.safetensors",
305
+ "model.layers.39.input_layernorm.weight": "model-00019-of-00037.safetensors",
306
+ "model.layers.39.mlp.down_proj.weight": "model-00019-of-00037.safetensors",
307
+ "model.layers.39.mlp.gate_proj.weight": "model-00019-of-00037.safetensors",
308
+ "model.layers.39.mlp.up_proj.weight": "model-00019-of-00037.safetensors",
309
+ "model.layers.39.post_attention_layernorm.weight": "model-00019-of-00037.safetensors",
310
+ "model.layers.39.self_attn.k_proj.weight": "model-00018-of-00037.safetensors",
311
+ "model.layers.39.self_attn.o_proj.weight": "model-00018-of-00037.safetensors",
312
+ "model.layers.39.self_attn.q_proj.weight": "model-00018-of-00037.safetensors",
313
+ "model.layers.39.self_attn.v_proj.weight": "model-00018-of-00037.safetensors",
314
+ "model.layers.4.input_layernorm.weight": "model-00003-of-00037.safetensors",
315
+ "model.layers.4.mlp.down_proj.weight": "model-00003-of-00037.safetensors",
316
+ "model.layers.4.mlp.gate_proj.weight": "model-00003-of-00037.safetensors",
317
+ "model.layers.4.mlp.up_proj.weight": "model-00003-of-00037.safetensors",
318
+ "model.layers.4.post_attention_layernorm.weight": "model-00003-of-00037.safetensors",
319
+ "model.layers.4.self_attn.k_proj.weight": "model-00003-of-00037.safetensors",
320
+ "model.layers.4.self_attn.o_proj.weight": "model-00003-of-00037.safetensors",
321
+ "model.layers.4.self_attn.q_proj.weight": "model-00003-of-00037.safetensors",
322
+ "model.layers.4.self_attn.v_proj.weight": "model-00003-of-00037.safetensors",
323
+ "model.layers.40.input_layernorm.weight": "model-00019-of-00037.safetensors",
324
+ "model.layers.40.mlp.down_proj.weight": "model-00019-of-00037.safetensors",
325
+ "model.layers.40.mlp.gate_proj.weight": "model-00019-of-00037.safetensors",
326
+ "model.layers.40.mlp.up_proj.weight": "model-00019-of-00037.safetensors",
327
+ "model.layers.40.post_attention_layernorm.weight": "model-00019-of-00037.safetensors",
328
+ "model.layers.40.self_attn.k_proj.weight": "model-00019-of-00037.safetensors",
329
+ "model.layers.40.self_attn.o_proj.weight": "model-00019-of-00037.safetensors",
330
+ "model.layers.40.self_attn.q_proj.weight": "model-00019-of-00037.safetensors",
331
+ "model.layers.40.self_attn.v_proj.weight": "model-00019-of-00037.safetensors",
332
+ "model.layers.41.input_layernorm.weight": "model-00020-of-00037.safetensors",
333
+ "model.layers.41.mlp.down_proj.weight": "model-00020-of-00037.safetensors",
334
+ "model.layers.41.mlp.gate_proj.weight": "model-00019-of-00037.safetensors",
335
+ "model.layers.41.mlp.up_proj.weight": "model-00020-of-00037.safetensors",
336
+ "model.layers.41.post_attention_layernorm.weight": "model-00020-of-00037.safetensors",
337
+ "model.layers.41.self_attn.k_proj.weight": "model-00019-of-00037.safetensors",
338
+ "model.layers.41.self_attn.o_proj.weight": "model-00019-of-00037.safetensors",
339
+ "model.layers.41.self_attn.q_proj.weight": "model-00019-of-00037.safetensors",
340
+ "model.layers.41.self_attn.v_proj.weight": "model-00019-of-00037.safetensors",
341
+ "model.layers.42.input_layernorm.weight": "model-00020-of-00037.safetensors",
342
+ "model.layers.42.mlp.down_proj.weight": "model-00020-of-00037.safetensors",
343
+ "model.layers.42.mlp.gate_proj.weight": "model-00020-of-00037.safetensors",
344
+ "model.layers.42.mlp.up_proj.weight": "model-00020-of-00037.safetensors",
345
+ "model.layers.42.post_attention_layernorm.weight": "model-00020-of-00037.safetensors",
346
+ "model.layers.42.self_attn.k_proj.weight": "model-00020-of-00037.safetensors",
347
+ "model.layers.42.self_attn.o_proj.weight": "model-00020-of-00037.safetensors",
348
+ "model.layers.42.self_attn.q_proj.weight": "model-00020-of-00037.safetensors",
349
+ "model.layers.42.self_attn.v_proj.weight": "model-00020-of-00037.safetensors",
350
+ "model.layers.43.input_layernorm.weight": "model-00021-of-00037.safetensors",
351
+ "model.layers.43.mlp.down_proj.weight": "model-00021-of-00037.safetensors",
352
+ "model.layers.43.mlp.gate_proj.weight": "model-00020-of-00037.safetensors",
353
+ "model.layers.43.mlp.up_proj.weight": "model-00020-of-00037.safetensors",
354
+ "model.layers.43.post_attention_layernorm.weight": "model-00021-of-00037.safetensors",
355
+ "model.layers.43.self_attn.k_proj.weight": "model-00020-of-00037.safetensors",
356
+ "model.layers.43.self_attn.o_proj.weight": "model-00020-of-00037.safetensors",
357
+ "model.layers.43.self_attn.q_proj.weight": "model-00020-of-00037.safetensors",
358
+ "model.layers.43.self_attn.v_proj.weight": "model-00020-of-00037.safetensors",
359
+ "model.layers.44.input_layernorm.weight": "model-00021-of-00037.safetensors",
360
+ "model.layers.44.mlp.down_proj.weight": "model-00021-of-00037.safetensors",
361
+ "model.layers.44.mlp.gate_proj.weight": "model-00021-of-00037.safetensors",
362
+ "model.layers.44.mlp.up_proj.weight": "model-00021-of-00037.safetensors",
363
+ "model.layers.44.post_attention_layernorm.weight": "model-00021-of-00037.safetensors",
364
+ "model.layers.44.self_attn.k_proj.weight": "model-00021-of-00037.safetensors",
365
+ "model.layers.44.self_attn.o_proj.weight": "model-00021-of-00037.safetensors",
366
+ "model.layers.44.self_attn.q_proj.weight": "model-00021-of-00037.safetensors",
367
+ "model.layers.44.self_attn.v_proj.weight": "model-00021-of-00037.safetensors",
368
+ "model.layers.45.input_layernorm.weight": "model-00021-of-00037.safetensors",
369
+ "model.layers.45.mlp.down_proj.weight": "model-00021-of-00037.safetensors",
370
+ "model.layers.45.mlp.gate_proj.weight": "model-00021-of-00037.safetensors",
371
+ "model.layers.45.mlp.up_proj.weight": "model-00021-of-00037.safetensors",
372
+ "model.layers.45.post_attention_layernorm.weight": "model-00021-of-00037.safetensors",
373
+ "model.layers.45.self_attn.k_proj.weight": "model-00021-of-00037.safetensors",
374
+ "model.layers.45.self_attn.o_proj.weight": "model-00021-of-00037.safetensors",
375
+ "model.layers.45.self_attn.q_proj.weight": "model-00021-of-00037.safetensors",
376
+ "model.layers.45.self_attn.v_proj.weight": "model-00021-of-00037.safetensors",
377
+ "model.layers.46.input_layernorm.weight": "model-00022-of-00037.safetensors",
378
+ "model.layers.46.mlp.down_proj.weight": "model-00022-of-00037.safetensors",
379
+ "model.layers.46.mlp.gate_proj.weight": "model-00022-of-00037.safetensors",
380
+ "model.layers.46.mlp.up_proj.weight": "model-00022-of-00037.safetensors",
381
+ "model.layers.46.post_attention_layernorm.weight": "model-00022-of-00037.safetensors",
382
+ "model.layers.46.self_attn.k_proj.weight": "model-00022-of-00037.safetensors",
383
+ "model.layers.46.self_attn.o_proj.weight": "model-00022-of-00037.safetensors",
384
+ "model.layers.46.self_attn.q_proj.weight": "model-00022-of-00037.safetensors",
385
+ "model.layers.46.self_attn.v_proj.weight": "model-00022-of-00037.safetensors",
386
+ "model.layers.47.input_layernorm.weight": "model-00022-of-00037.safetensors",
387
+ "model.layers.47.mlp.down_proj.weight": "model-00022-of-00037.safetensors",
388
+ "model.layers.47.mlp.gate_proj.weight": "model-00022-of-00037.safetensors",
389
+ "model.layers.47.mlp.up_proj.weight": "model-00022-of-00037.safetensors",
390
+ "model.layers.47.post_attention_layernorm.weight": "model-00022-of-00037.safetensors",
391
+ "model.layers.47.self_attn.k_proj.weight": "model-00022-of-00037.safetensors",
392
+ "model.layers.47.self_attn.o_proj.weight": "model-00022-of-00037.safetensors",
393
+ "model.layers.47.self_attn.q_proj.weight": "model-00022-of-00037.safetensors",
394
+ "model.layers.47.self_attn.v_proj.weight": "model-00022-of-00037.safetensors",
395
+ "model.layers.48.input_layernorm.weight": "model-00023-of-00037.safetensors",
396
+ "model.layers.48.mlp.down_proj.weight": "model-00023-of-00037.safetensors",
397
+ "model.layers.48.mlp.gate_proj.weight": "model-00023-of-00037.safetensors",
398
+ "model.layers.48.mlp.up_proj.weight": "model-00023-of-00037.safetensors",
399
+ "model.layers.48.post_attention_layernorm.weight": "model-00023-of-00037.safetensors",
400
+ "model.layers.48.self_attn.k_proj.weight": "model-00022-of-00037.safetensors",
401
+ "model.layers.48.self_attn.o_proj.weight": "model-00022-of-00037.safetensors",
402
+ "model.layers.48.self_attn.q_proj.weight": "model-00022-of-00037.safetensors",
403
+ "model.layers.48.self_attn.v_proj.weight": "model-00022-of-00037.safetensors",
404
+ "model.layers.49.input_layernorm.weight": "model-00023-of-00037.safetensors",
405
+ "model.layers.49.mlp.down_proj.weight": "model-00023-of-00037.safetensors",
406
+ "model.layers.49.mlp.gate_proj.weight": "model-00023-of-00037.safetensors",
407
+ "model.layers.49.mlp.up_proj.weight": "model-00023-of-00037.safetensors",
408
+ "model.layers.49.post_attention_layernorm.weight": "model-00023-of-00037.safetensors",
409
+ "model.layers.49.self_attn.k_proj.weight": "model-00023-of-00037.safetensors",
410
+ "model.layers.49.self_attn.o_proj.weight": "model-00023-of-00037.safetensors",
411
+ "model.layers.49.self_attn.q_proj.weight": "model-00023-of-00037.safetensors",
412
+ "model.layers.49.self_attn.v_proj.weight": "model-00023-of-00037.safetensors",
413
+ "model.layers.5.input_layernorm.weight": "model-00004-of-00037.safetensors",
414
+ "model.layers.5.mlp.down_proj.weight": "model-00004-of-00037.safetensors",
415
+ "model.layers.5.mlp.gate_proj.weight": "model-00003-of-00037.safetensors",
416
+ "model.layers.5.mlp.up_proj.weight": "model-00004-of-00037.safetensors",
417
+ "model.layers.5.post_attention_layernorm.weight": "model-00004-of-00037.safetensors",
418
+ "model.layers.5.self_attn.k_proj.weight": "model-00003-of-00037.safetensors",
419
+ "model.layers.5.self_attn.o_proj.weight": "model-00003-of-00037.safetensors",
420
+ "model.layers.5.self_attn.q_proj.weight": "model-00003-of-00037.safetensors",
421
+ "model.layers.5.self_attn.v_proj.weight": "model-00003-of-00037.safetensors",
422
+ "model.layers.50.input_layernorm.weight": "model-00024-of-00037.safetensors",
423
+ "model.layers.50.mlp.down_proj.weight": "model-00024-of-00037.safetensors",
424
+ "model.layers.50.mlp.gate_proj.weight": "model-00023-of-00037.safetensors",
425
+ "model.layers.50.mlp.up_proj.weight": "model-00024-of-00037.safetensors",
426
+ "model.layers.50.post_attention_layernorm.weight": "model-00024-of-00037.safetensors",
427
+ "model.layers.50.self_attn.k_proj.weight": "model-00023-of-00037.safetensors",
428
+ "model.layers.50.self_attn.o_proj.weight": "model-00023-of-00037.safetensors",
429
+ "model.layers.50.self_attn.q_proj.weight": "model-00023-of-00037.safetensors",
430
+ "model.layers.50.self_attn.v_proj.weight": "model-00023-of-00037.safetensors",
431
+ "model.layers.51.input_layernorm.weight": "model-00024-of-00037.safetensors",
432
+ "model.layers.51.mlp.down_proj.weight": "model-00024-of-00037.safetensors",
433
+ "model.layers.51.mlp.gate_proj.weight": "model-00024-of-00037.safetensors",
434
+ "model.layers.51.mlp.up_proj.weight": "model-00024-of-00037.safetensors",
435
+ "model.layers.51.post_attention_layernorm.weight": "model-00024-of-00037.safetensors",
436
+ "model.layers.51.self_attn.k_proj.weight": "model-00024-of-00037.safetensors",
437
+ "model.layers.51.self_attn.o_proj.weight": "model-00024-of-00037.safetensors",
438
+ "model.layers.51.self_attn.q_proj.weight": "model-00024-of-00037.safetensors",
439
+ "model.layers.51.self_attn.v_proj.weight": "model-00024-of-00037.safetensors",
440
+ "model.layers.52.input_layernorm.weight": "model-00025-of-00037.safetensors",
441
+ "model.layers.52.mlp.down_proj.weight": "model-00025-of-00037.safetensors",
442
+ "model.layers.52.mlp.gate_proj.weight": "model-00024-of-00037.safetensors",
443
+ "model.layers.52.mlp.up_proj.weight": "model-00024-of-00037.safetensors",
444
+ "model.layers.52.post_attention_layernorm.weight": "model-00025-of-00037.safetensors",
445
+ "model.layers.52.self_attn.k_proj.weight": "model-00024-of-00037.safetensors",
446
+ "model.layers.52.self_attn.o_proj.weight": "model-00024-of-00037.safetensors",
447
+ "model.layers.52.self_attn.q_proj.weight": "model-00024-of-00037.safetensors",
448
+ "model.layers.52.self_attn.v_proj.weight": "model-00024-of-00037.safetensors",
449
+ "model.layers.53.input_layernorm.weight": "model-00025-of-00037.safetensors",
450
+ "model.layers.53.mlp.down_proj.weight": "model-00025-of-00037.safetensors",
451
+ "model.layers.53.mlp.gate_proj.weight": "model-00025-of-00037.safetensors",
452
+ "model.layers.53.mlp.up_proj.weight": "model-00025-of-00037.safetensors",
453
+ "model.layers.53.post_attention_layernorm.weight": "model-00025-of-00037.safetensors",
454
+ "model.layers.53.self_attn.k_proj.weight": "model-00025-of-00037.safetensors",
455
+ "model.layers.53.self_attn.o_proj.weight": "model-00025-of-00037.safetensors",
456
+ "model.layers.53.self_attn.q_proj.weight": "model-00025-of-00037.safetensors",
457
+ "model.layers.53.self_attn.v_proj.weight": "model-00025-of-00037.safetensors",
458
+ "model.layers.54.input_layernorm.weight": "model-00025-of-00037.safetensors",
459
+ "model.layers.54.mlp.down_proj.weight": "model-00025-of-00037.safetensors",
460
+ "model.layers.54.mlp.gate_proj.weight": "model-00025-of-00037.safetensors",
461
+ "model.layers.54.mlp.up_proj.weight": "model-00025-of-00037.safetensors",
462
+ "model.layers.54.post_attention_layernorm.weight": "model-00025-of-00037.safetensors",
463
+ "model.layers.54.self_attn.k_proj.weight": "model-00025-of-00037.safetensors",
464
+ "model.layers.54.self_attn.o_proj.weight": "model-00025-of-00037.safetensors",
465
+ "model.layers.54.self_attn.q_proj.weight": "model-00025-of-00037.safetensors",
466
+ "model.layers.54.self_attn.v_proj.weight": "model-00025-of-00037.safetensors",
467
+ "model.layers.55.input_layernorm.weight": "model-00026-of-00037.safetensors",
468
+ "model.layers.55.mlp.down_proj.weight": "model-00026-of-00037.safetensors",
469
+ "model.layers.55.mlp.gate_proj.weight": "model-00026-of-00037.safetensors",
470
+ "model.layers.55.mlp.up_proj.weight": "model-00026-of-00037.safetensors",
471
+ "model.layers.55.post_attention_layernorm.weight": "model-00026-of-00037.safetensors",
472
+ "model.layers.55.self_attn.k_proj.weight": "model-00026-of-00037.safetensors",
473
+ "model.layers.55.self_attn.o_proj.weight": "model-00026-of-00037.safetensors",
474
+ "model.layers.55.self_attn.q_proj.weight": "model-00026-of-00037.safetensors",
475
+ "model.layers.55.self_attn.v_proj.weight": "model-00026-of-00037.safetensors",
476
+ "model.layers.56.input_layernorm.weight": "model-00026-of-00037.safetensors",
477
+ "model.layers.56.mlp.down_proj.weight": "model-00026-of-00037.safetensors",
478
+ "model.layers.56.mlp.gate_proj.weight": "model-00026-of-00037.safetensors",
479
+ "model.layers.56.mlp.up_proj.weight": "model-00026-of-00037.safetensors",
480
+ "model.layers.56.post_attention_layernorm.weight": "model-00026-of-00037.safetensors",
481
+ "model.layers.56.self_attn.k_proj.weight": "model-00026-of-00037.safetensors",
482
+ "model.layers.56.self_attn.o_proj.weight": "model-00026-of-00037.safetensors",
483
+ "model.layers.56.self_attn.q_proj.weight": "model-00026-of-00037.safetensors",
484
+ "model.layers.56.self_attn.v_proj.weight": "model-00026-of-00037.safetensors",
485
+ "model.layers.57.input_layernorm.weight": "model-00027-of-00037.safetensors",
486
+ "model.layers.57.mlp.down_proj.weight": "model-00027-of-00037.safetensors",
487
+ "model.layers.57.mlp.gate_proj.weight": "model-00027-of-00037.safetensors",
488
+ "model.layers.57.mlp.up_proj.weight": "model-00027-of-00037.safetensors",
489
+ "model.layers.57.post_attention_layernorm.weight": "model-00027-of-00037.safetensors",
490
+ "model.layers.57.self_attn.k_proj.weight": "model-00026-of-00037.safetensors",
491
+ "model.layers.57.self_attn.o_proj.weight": "model-00026-of-00037.safetensors",
492
+ "model.layers.57.self_attn.q_proj.weight": "model-00026-of-00037.safetensors",
493
+ "model.layers.57.self_attn.v_proj.weight": "model-00026-of-00037.safetensors",
494
+ "model.layers.58.input_layernorm.weight": "model-00027-of-00037.safetensors",
495
+ "model.layers.58.mlp.down_proj.weight": "model-00027-of-00037.safetensors",
496
+ "model.layers.58.mlp.gate_proj.weight": "model-00027-of-00037.safetensors",
497
+ "model.layers.58.mlp.up_proj.weight": "model-00027-of-00037.safetensors",
498
+ "model.layers.58.post_attention_layernorm.weight": "model-00027-of-00037.safetensors",
499
+ "model.layers.58.self_attn.k_proj.weight": "model-00027-of-00037.safetensors",
500
+ "model.layers.58.self_attn.o_proj.weight": "model-00027-of-00037.safetensors",
501
+ "model.layers.58.self_attn.q_proj.weight": "model-00027-of-00037.safetensors",
502
+ "model.layers.58.self_attn.v_proj.weight": "model-00027-of-00037.safetensors",
503
+ "model.layers.59.input_layernorm.weight": "model-00028-of-00037.safetensors",
504
+ "model.layers.59.mlp.down_proj.weight": "model-00028-of-00037.safetensors",
505
+ "model.layers.59.mlp.gate_proj.weight": "model-00027-of-00037.safetensors",
506
+ "model.layers.59.mlp.up_proj.weight": "model-00028-of-00037.safetensors",
507
+ "model.layers.59.post_attention_layernorm.weight": "model-00028-of-00037.safetensors",
508
+ "model.layers.59.self_attn.k_proj.weight": "model-00027-of-00037.safetensors",
509
+ "model.layers.59.self_attn.o_proj.weight": "model-00027-of-00037.safetensors",
510
+ "model.layers.59.self_attn.q_proj.weight": "model-00027-of-00037.safetensors",
511
+ "model.layers.59.self_attn.v_proj.weight": "model-00027-of-00037.safetensors",
512
+ "model.layers.6.input_layernorm.weight": "model-00004-of-00037.safetensors",
513
+ "model.layers.6.mlp.down_proj.weight": "model-00004-of-00037.safetensors",
514
+ "model.layers.6.mlp.gate_proj.weight": "model-00004-of-00037.safetensors",
515
+ "model.layers.6.mlp.up_proj.weight": "model-00004-of-00037.safetensors",
516
+ "model.layers.6.post_attention_layernorm.weight": "model-00004-of-00037.safetensors",
517
+ "model.layers.6.self_attn.k_proj.weight": "model-00004-of-00037.safetensors",
518
+ "model.layers.6.self_attn.o_proj.weight": "model-00004-of-00037.safetensors",
519
+ "model.layers.6.self_attn.q_proj.weight": "model-00004-of-00037.safetensors",
520
+ "model.layers.6.self_attn.v_proj.weight": "model-00004-of-00037.safetensors",
521
+ "model.layers.60.input_layernorm.weight": "model-00028-of-00037.safetensors",
522
+ "model.layers.60.mlp.down_proj.weight": "model-00028-of-00037.safetensors",
523
+ "model.layers.60.mlp.gate_proj.weight": "model-00028-of-00037.safetensors",
524
+ "model.layers.60.mlp.up_proj.weight": "model-00028-of-00037.safetensors",
525
+ "model.layers.60.post_attention_layernorm.weight": "model-00028-of-00037.safetensors",
526
+ "model.layers.60.self_attn.k_proj.weight": "model-00028-of-00037.safetensors",
527
+ "model.layers.60.self_attn.o_proj.weight": "model-00028-of-00037.safetensors",
528
+ "model.layers.60.self_attn.q_proj.weight": "model-00028-of-00037.safetensors",
529
+ "model.layers.60.self_attn.v_proj.weight": "model-00028-of-00037.safetensors",
530
+ "model.layers.61.input_layernorm.weight": "model-00029-of-00037.safetensors",
531
+ "model.layers.61.mlp.down_proj.weight": "model-00029-of-00037.safetensors",
532
+ "model.layers.61.mlp.gate_proj.weight": "model-00028-of-00037.safetensors",
533
+ "model.layers.61.mlp.up_proj.weight": "model-00028-of-00037.safetensors",
534
+ "model.layers.61.post_attention_layernorm.weight": "model-00029-of-00037.safetensors",
535
+ "model.layers.61.self_attn.k_proj.weight": "model-00028-of-00037.safetensors",
536
+ "model.layers.61.self_attn.o_proj.weight": "model-00028-of-00037.safetensors",
537
+ "model.layers.61.self_attn.q_proj.weight": "model-00028-of-00037.safetensors",
538
+ "model.layers.61.self_attn.v_proj.weight": "model-00028-of-00037.safetensors",
539
+ "model.layers.62.input_layernorm.weight": "model-00029-of-00037.safetensors",
540
+ "model.layers.62.mlp.down_proj.weight": "model-00029-of-00037.safetensors",
541
+ "model.layers.62.mlp.gate_proj.weight": "model-00029-of-00037.safetensors",
542
+ "model.layers.62.mlp.up_proj.weight": "model-00029-of-00037.safetensors",
543
+ "model.layers.62.post_attention_layernorm.weight": "model-00029-of-00037.safetensors",
544
+ "model.layers.62.self_attn.k_proj.weight": "model-00029-of-00037.safetensors",
545
+ "model.layers.62.self_attn.o_proj.weight": "model-00029-of-00037.safetensors",
546
+ "model.layers.62.self_attn.q_proj.weight": "model-00029-of-00037.safetensors",
547
+ "model.layers.62.self_attn.v_proj.weight": "model-00029-of-00037.safetensors",
548
+ "model.layers.63.input_layernorm.weight": "model-00029-of-00037.safetensors",
549
+ "model.layers.63.mlp.down_proj.weight": "model-00029-of-00037.safetensors",
550
+ "model.layers.63.mlp.gate_proj.weight": "model-00029-of-00037.safetensors",
551
+ "model.layers.63.mlp.up_proj.weight": "model-00029-of-00037.safetensors",
552
+ "model.layers.63.post_attention_layernorm.weight": "model-00029-of-00037.safetensors",
553
+ "model.layers.63.self_attn.k_proj.weight": "model-00029-of-00037.safetensors",
554
+ "model.layers.63.self_attn.o_proj.weight": "model-00029-of-00037.safetensors",
555
+ "model.layers.63.self_attn.q_proj.weight": "model-00029-of-00037.safetensors",
556
+ "model.layers.63.self_attn.v_proj.weight": "model-00029-of-00037.safetensors",
557
+ "model.layers.64.input_layernorm.weight": "model-00030-of-00037.safetensors",
558
+ "model.layers.64.mlp.down_proj.weight": "model-00030-of-00037.safetensors",
559
+ "model.layers.64.mlp.gate_proj.weight": "model-00030-of-00037.safetensors",
560
+ "model.layers.64.mlp.up_proj.weight": "model-00030-of-00037.safetensors",
561
+ "model.layers.64.post_attention_layernorm.weight": "model-00030-of-00037.safetensors",
562
+ "model.layers.64.self_attn.k_proj.weight": "model-00030-of-00037.safetensors",
563
+ "model.layers.64.self_attn.o_proj.weight": "model-00030-of-00037.safetensors",
564
+ "model.layers.64.self_attn.q_proj.weight": "model-00030-of-00037.safetensors",
565
+ "model.layers.64.self_attn.v_proj.weight": "model-00030-of-00037.safetensors",
566
+ "model.layers.65.input_layernorm.weight": "model-00030-of-00037.safetensors",
567
+ "model.layers.65.mlp.down_proj.weight": "model-00030-of-00037.safetensors",
568
+ "model.layers.65.mlp.gate_proj.weight": "model-00030-of-00037.safetensors",
569
+ "model.layers.65.mlp.up_proj.weight": "model-00030-of-00037.safetensors",
570
+ "model.layers.65.post_attention_layernorm.weight": "model-00030-of-00037.safetensors",
571
+ "model.layers.65.self_attn.k_proj.weight": "model-00030-of-00037.safetensors",
572
+ "model.layers.65.self_attn.o_proj.weight": "model-00030-of-00037.safetensors",
573
+ "model.layers.65.self_attn.q_proj.weight": "model-00030-of-00037.safetensors",
574
+ "model.layers.65.self_attn.v_proj.weight": "model-00030-of-00037.safetensors",
575
+ "model.layers.66.input_layernorm.weight": "model-00031-of-00037.safetensors",
576
+ "model.layers.66.mlp.down_proj.weight": "model-00031-of-00037.safetensors",
577
+ "model.layers.66.mlp.gate_proj.weight": "model-00031-of-00037.safetensors",
578
+ "model.layers.66.mlp.up_proj.weight": "model-00031-of-00037.safetensors",
579
+ "model.layers.66.post_attention_layernorm.weight": "model-00031-of-00037.safetensors",
580
+ "model.layers.66.self_attn.k_proj.weight": "model-00030-of-00037.safetensors",
581
+ "model.layers.66.self_attn.o_proj.weight": "model-00030-of-00037.safetensors",
582
+ "model.layers.66.self_attn.q_proj.weight": "model-00030-of-00037.safetensors",
583
+ "model.layers.66.self_attn.v_proj.weight": "model-00030-of-00037.safetensors",
584
+ "model.layers.67.input_layernorm.weight": "model-00031-of-00037.safetensors",
585
+ "model.layers.67.mlp.down_proj.weight": "model-00031-of-00037.safetensors",
586
+ "model.layers.67.mlp.gate_proj.weight": "model-00031-of-00037.safetensors",
587
+ "model.layers.67.mlp.up_proj.weight": "model-00031-of-00037.safetensors",
588
+ "model.layers.67.post_attention_layernorm.weight": "model-00031-of-00037.safetensors",
589
+ "model.layers.67.self_attn.k_proj.weight": "model-00031-of-00037.safetensors",
590
+ "model.layers.67.self_attn.o_proj.weight": "model-00031-of-00037.safetensors",
591
+ "model.layers.67.self_attn.q_proj.weight": "model-00031-of-00037.safetensors",
592
+ "model.layers.67.self_attn.v_proj.weight": "model-00031-of-00037.safetensors",
593
+ "model.layers.68.input_layernorm.weight": "model-00032-of-00037.safetensors",
594
+ "model.layers.68.mlp.down_proj.weight": "model-00032-of-00037.safetensors",
595
+ "model.layers.68.mlp.gate_proj.weight": "model-00031-of-00037.safetensors",
596
+ "model.layers.68.mlp.up_proj.weight": "model-00032-of-00037.safetensors",
597
+ "model.layers.68.post_attention_layernorm.weight": "model-00032-of-00037.safetensors",
598
+ "model.layers.68.self_attn.k_proj.weight": "model-00031-of-00037.safetensors",
599
+ "model.layers.68.self_attn.o_proj.weight": "model-00031-of-00037.safetensors",
600
+ "model.layers.68.self_attn.q_proj.weight": "model-00031-of-00037.safetensors",
601
+ "model.layers.68.self_attn.v_proj.weight": "model-00031-of-00037.safetensors",
602
+ "model.layers.69.input_layernorm.weight": "model-00032-of-00037.safetensors",
603
+ "model.layers.69.mlp.down_proj.weight": "model-00032-of-00037.safetensors",
604
+ "model.layers.69.mlp.gate_proj.weight": "model-00032-of-00037.safetensors",
605
+ "model.layers.69.mlp.up_proj.weight": "model-00032-of-00037.safetensors",
606
+ "model.layers.69.post_attention_layernorm.weight": "model-00032-of-00037.safetensors",
607
+ "model.layers.69.self_attn.k_proj.weight": "model-00032-of-00037.safetensors",
608
+ "model.layers.69.self_attn.o_proj.weight": "model-00032-of-00037.safetensors",
609
+ "model.layers.69.self_attn.q_proj.weight": "model-00032-of-00037.safetensors",
610
+ "model.layers.69.self_attn.v_proj.weight": "model-00032-of-00037.safetensors",
611
+ "model.layers.7.input_layernorm.weight": "model-00005-of-00037.safetensors",
612
+ "model.layers.7.mlp.down_proj.weight": "model-00005-of-00037.safetensors",
613
+ "model.layers.7.mlp.gate_proj.weight": "model-00004-of-00037.safetensors",
614
+ "model.layers.7.mlp.up_proj.weight": "model-00004-of-00037.safetensors",
615
+ "model.layers.7.post_attention_layernorm.weight": "model-00005-of-00037.safetensors",
616
+ "model.layers.7.self_attn.k_proj.weight": "model-00004-of-00037.safetensors",
617
+ "model.layers.7.self_attn.o_proj.weight": "model-00004-of-00037.safetensors",
618
+ "model.layers.7.self_attn.q_proj.weight": "model-00004-of-00037.safetensors",
619
+ "model.layers.7.self_attn.v_proj.weight": "model-00004-of-00037.safetensors",
620
+ "model.layers.70.input_layernorm.weight": "model-00033-of-00037.safetensors",
621
+ "model.layers.70.mlp.down_proj.weight": "model-00033-of-00037.safetensors",
622
+ "model.layers.70.mlp.gate_proj.weight": "model-00032-of-00037.safetensors",
623
+ "model.layers.70.mlp.up_proj.weight": "model-00032-of-00037.safetensors",
624
+ "model.layers.70.post_attention_layernorm.weight": "model-00033-of-00037.safetensors",
625
+ "model.layers.70.self_attn.k_proj.weight": "model-00032-of-00037.safetensors",
626
+ "model.layers.70.self_attn.o_proj.weight": "model-00032-of-00037.safetensors",
627
+ "model.layers.70.self_attn.q_proj.weight": "model-00032-of-00037.safetensors",
628
+ "model.layers.70.self_attn.v_proj.weight": "model-00032-of-00037.safetensors",
629
+ "model.layers.71.input_layernorm.weight": "model-00033-of-00037.safetensors",
630
+ "model.layers.71.mlp.down_proj.weight": "model-00033-of-00037.safetensors",
631
+ "model.layers.71.mlp.gate_proj.weight": "model-00033-of-00037.safetensors",
632
+ "model.layers.71.mlp.up_proj.weight": "model-00033-of-00037.safetensors",
633
+ "model.layers.71.post_attention_layernorm.weight": "model-00033-of-00037.safetensors",
634
+ "model.layers.71.self_attn.k_proj.weight": "model-00033-of-00037.safetensors",
635
+ "model.layers.71.self_attn.o_proj.weight": "model-00033-of-00037.safetensors",
636
+ "model.layers.71.self_attn.q_proj.weight": "model-00033-of-00037.safetensors",
637
+ "model.layers.71.self_attn.v_proj.weight": "model-00033-of-00037.safetensors",
638
+ "model.layers.72.input_layernorm.weight": "model-00033-of-00037.safetensors",
639
+ "model.layers.72.mlp.down_proj.weight": "model-00033-of-00037.safetensors",
640
+ "model.layers.72.mlp.gate_proj.weight": "model-00033-of-00037.safetensors",
641
+ "model.layers.72.mlp.up_proj.weight": "model-00033-of-00037.safetensors",
642
+ "model.layers.72.post_attention_layernorm.weight": "model-00033-of-00037.safetensors",
643
+ "model.layers.72.self_attn.k_proj.weight": "model-00033-of-00037.safetensors",
644
+ "model.layers.72.self_attn.o_proj.weight": "model-00033-of-00037.safetensors",
645
+ "model.layers.72.self_attn.q_proj.weight": "model-00033-of-00037.safetensors",
646
+ "model.layers.72.self_attn.v_proj.weight": "model-00033-of-00037.safetensors",
647
+ "model.layers.73.input_layernorm.weight": "model-00034-of-00037.safetensors",
648
+ "model.layers.73.mlp.down_proj.weight": "model-00034-of-00037.safetensors",
649
+ "model.layers.73.mlp.gate_proj.weight": "model-00034-of-00037.safetensors",
650
+ "model.layers.73.mlp.up_proj.weight": "model-00034-of-00037.safetensors",
651
+ "model.layers.73.post_attention_layernorm.weight": "model-00034-of-00037.safetensors",
652
+ "model.layers.73.self_attn.k_proj.weight": "model-00034-of-00037.safetensors",
653
+ "model.layers.73.self_attn.o_proj.weight": "model-00034-of-00037.safetensors",
654
+ "model.layers.73.self_attn.q_proj.weight": "model-00034-of-00037.safetensors",
655
+ "model.layers.73.self_attn.v_proj.weight": "model-00034-of-00037.safetensors",
656
+ "model.layers.74.input_layernorm.weight": "model-00034-of-00037.safetensors",
657
+ "model.layers.74.mlp.down_proj.weight": "model-00034-of-00037.safetensors",
658
+ "model.layers.74.mlp.gate_proj.weight": "model-00034-of-00037.safetensors",
659
+ "model.layers.74.mlp.up_proj.weight": "model-00034-of-00037.safetensors",
660
+ "model.layers.74.post_attention_layernorm.weight": "model-00034-of-00037.safetensors",
661
+ "model.layers.74.self_attn.k_proj.weight": "model-00034-of-00037.safetensors",
662
+ "model.layers.74.self_attn.o_proj.weight": "model-00034-of-00037.safetensors",
663
+ "model.layers.74.self_attn.q_proj.weight": "model-00034-of-00037.safetensors",
664
+ "model.layers.74.self_attn.v_proj.weight": "model-00034-of-00037.safetensors",
665
+ "model.layers.75.input_layernorm.weight": "model-00035-of-00037.safetensors",
666
+ "model.layers.75.mlp.down_proj.weight": "model-00035-of-00037.safetensors",
667
+ "model.layers.75.mlp.gate_proj.weight": "model-00035-of-00037.safetensors",
668
+ "model.layers.75.mlp.up_proj.weight": "model-00035-of-00037.safetensors",
669
+ "model.layers.75.post_attention_layernorm.weight": "model-00035-of-00037.safetensors",
670
+ "model.layers.75.self_attn.k_proj.weight": "model-00034-of-00037.safetensors",
671
+ "model.layers.75.self_attn.o_proj.weight": "model-00034-of-00037.safetensors",
672
+ "model.layers.75.self_attn.q_proj.weight": "model-00034-of-00037.safetensors",
673
+ "model.layers.75.self_attn.v_proj.weight": "model-00034-of-00037.safetensors",
674
+ "model.layers.76.input_layernorm.weight": "model-00035-of-00037.safetensors",
675
+ "model.layers.76.mlp.down_proj.weight": "model-00035-of-00037.safetensors",
676
+ "model.layers.76.mlp.gate_proj.weight": "model-00035-of-00037.safetensors",
677
+ "model.layers.76.mlp.up_proj.weight": "model-00035-of-00037.safetensors",
678
+ "model.layers.76.post_attention_layernorm.weight": "model-00035-of-00037.safetensors",
679
+ "model.layers.76.self_attn.k_proj.weight": "model-00035-of-00037.safetensors",
680
+ "model.layers.76.self_attn.o_proj.weight": "model-00035-of-00037.safetensors",
681
+ "model.layers.76.self_attn.q_proj.weight": "model-00035-of-00037.safetensors",
682
+ "model.layers.76.self_attn.v_proj.weight": "model-00035-of-00037.safetensors",
683
+ "model.layers.77.input_layernorm.weight": "model-00036-of-00037.safetensors",
684
+ "model.layers.77.mlp.down_proj.weight": "model-00036-of-00037.safetensors",
685
+ "model.layers.77.mlp.gate_proj.weight": "model-00035-of-00037.safetensors",
686
+ "model.layers.77.mlp.up_proj.weight": "model-00036-of-00037.safetensors",
687
+ "model.layers.77.post_attention_layernorm.weight": "model-00036-of-00037.safetensors",
688
+ "model.layers.77.self_attn.k_proj.weight": "model-00035-of-00037.safetensors",
689
+ "model.layers.77.self_attn.o_proj.weight": "model-00035-of-00037.safetensors",
690
+ "model.layers.77.self_attn.q_proj.weight": "model-00035-of-00037.safetensors",
691
+ "model.layers.77.self_attn.v_proj.weight": "model-00035-of-00037.safetensors",
692
+ "model.layers.78.input_layernorm.weight": "model-00036-of-00037.safetensors",
693
+ "model.layers.78.mlp.down_proj.weight": "model-00036-of-00037.safetensors",
694
+ "model.layers.78.mlp.gate_proj.weight": "model-00036-of-00037.safetensors",
695
+ "model.layers.78.mlp.up_proj.weight": "model-00036-of-00037.safetensors",
696
+ "model.layers.78.post_attention_layernorm.weight": "model-00036-of-00037.safetensors",
697
+ "model.layers.78.self_attn.k_proj.weight": "model-00036-of-00037.safetensors",
698
+ "model.layers.78.self_attn.o_proj.weight": "model-00036-of-00037.safetensors",
699
+ "model.layers.78.self_attn.q_proj.weight": "model-00036-of-00037.safetensors",
700
+ "model.layers.78.self_attn.v_proj.weight": "model-00036-of-00037.safetensors",
701
+ "model.layers.79.input_layernorm.weight": "model-00037-of-00037.safetensors",
702
+ "model.layers.79.mlp.down_proj.weight": "model-00037-of-00037.safetensors",
703
+ "model.layers.79.mlp.gate_proj.weight": "model-00036-of-00037.safetensors",
704
+ "model.layers.79.mlp.up_proj.weight": "model-00036-of-00037.safetensors",
705
+ "model.layers.79.post_attention_layernorm.weight": "model-00037-of-00037.safetensors",
706
+ "model.layers.79.self_attn.k_proj.weight": "model-00036-of-00037.safetensors",
707
+ "model.layers.79.self_attn.o_proj.weight": "model-00036-of-00037.safetensors",
708
+ "model.layers.79.self_attn.q_proj.weight": "model-00036-of-00037.safetensors",
709
+ "model.layers.79.self_attn.v_proj.weight": "model-00036-of-00037.safetensors",
710
+ "model.layers.8.input_layernorm.weight": "model-00005-of-00037.safetensors",
711
+ "model.layers.8.mlp.down_proj.weight": "model-00005-of-00037.safetensors",
712
+ "model.layers.8.mlp.gate_proj.weight": "model-00005-of-00037.safetensors",
713
+ "model.layers.8.mlp.up_proj.weight": "model-00005-of-00037.safetensors",
714
+ "model.layers.8.post_attention_layernorm.weight": "model-00005-of-00037.safetensors",
715
+ "model.layers.8.self_attn.k_proj.weight": "model-00005-of-00037.safetensors",
716
+ "model.layers.8.self_attn.o_proj.weight": "model-00005-of-00037.safetensors",
717
+ "model.layers.8.self_attn.q_proj.weight": "model-00005-of-00037.safetensors",
718
+ "model.layers.8.self_attn.v_proj.weight": "model-00005-of-00037.safetensors",
719
+ "model.layers.9.input_layernorm.weight": "model-00005-of-00037.safetensors",
720
+ "model.layers.9.mlp.down_proj.weight": "model-00005-of-00037.safetensors",
721
+ "model.layers.9.mlp.gate_proj.weight": "model-00005-of-00037.safetensors",
722
+ "model.layers.9.mlp.up_proj.weight": "model-00005-of-00037.safetensors",
723
+ "model.layers.9.post_attention_layernorm.weight": "model-00005-of-00037.safetensors",
724
+ "model.layers.9.self_attn.k_proj.weight": "model-00005-of-00037.safetensors",
725
+ "model.layers.9.self_attn.o_proj.weight": "model-00005-of-00037.safetensors",
726
+ "model.layers.9.self_attn.q_proj.weight": "model-00005-of-00037.safetensors",
727
+ "model.layers.9.self_attn.v_proj.weight": "model-00005-of-00037.safetensors",
728
+ "model.norm.weight": "model-00037-of-00037.safetensors"
729
+ }
730
+ }
output-00001-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bfd335e4eb95a0c47b822b1127707b139b308a9fdf538959f28674735bc6f77b
3
+ size 8578742106
output-00002-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e76d23f5e6aaafebb351d6cb1e196340c24ba04ab3211ac815306b95066f790
3
+ size 8585770296
output-00003-of-00003.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a03ff2a8adda0d7dc3b84bea4a72c0e00c73c0c7bd82f4ca2342da21da85e48
3
+ size 6305584406
special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end_of_text|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,2062 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|reserved_special_token_2|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_3|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|reserved_special_token_4|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|reserved_special_token_5|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_6|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_7|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_8|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_9|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_10|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_11|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_12|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_13|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_14|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_15|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_16|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_17|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_18|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_19|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_20|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_21|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_22|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_23|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_24|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_25|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_26|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_27|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_28|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_29|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_30|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_31|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_32|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_33|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_34|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_35|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_36|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_37|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_38|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_39|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_40|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_41|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_42|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_43|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_44|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_45|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_46|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_47|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_48|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_49|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_50|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_51|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_52|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_53|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_54|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_55|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_56|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_57|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_58|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_59|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_60|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_61|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_62|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_63|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_64|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_65|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_66|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_67|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_68|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_69|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_70|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_71|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_72|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_73|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_74|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_75|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_76|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_77|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_78|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_79|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_80|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_81|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_82|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_83|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_84|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_85|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_86|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_87|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_88|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_89|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_90|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_91|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_92|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_93|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_94|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_95|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_96|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_97|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_98|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_99|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_100|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_101|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_102|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_103|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_104|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_105|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_106|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_107|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_108|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_109|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_110|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_111|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_112|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_113|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_114|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_115|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_116|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_117|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_118|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_119|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_120|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_121|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_122|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_123|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_124|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_125|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_126|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_127|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_128|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_129|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_130|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_131|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_132|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_133|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_134|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_135|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_136|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_137|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_138|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_139|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_140|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_141|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_142|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_143|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_144|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_145|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_146|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_147|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_148|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_149|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_150|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_151|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_152|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_153|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_154|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_155|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_156|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_157|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_158|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_159|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_160|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_161|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_162|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_163|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_164|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_165|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_166|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_167|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_168|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_169|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_170|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_171|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_172|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_173|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_174|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_175|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_176|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_177|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_178|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_179|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_180|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_181|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_182|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_183|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_184|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_185|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_186|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_187|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_188|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_189|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_190|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_191|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_192|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_193|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_194|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_195|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_196|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_197|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_198|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_199|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_200|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_201|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_202|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_203|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_204|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_205|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_206|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_207|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_208|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_209|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_210|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_211|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_212|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_213|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_214|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_215|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_216|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_217|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_218|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_219|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_220|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_221|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_222|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_223|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_224|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_225|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_226|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_227|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_228|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_229|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_230|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_231|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_232|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_233|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_234|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_235|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_236|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_237|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_238|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_239|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_240|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_241|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_242|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_243|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_244|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_245|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_246|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_247|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_248|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_249|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_250|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{% if add_generation_prompt %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{% endif %}",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|end_of_text|>",
2056
+ "model_input_names": [
2057
+ "input_ids",
2058
+ "attention_mask"
2059
+ ],
2060
+ "model_max_length": 1000000000000000019884624838656,
2061
+ "tokenizer_class": "PreTrainedTokenizerFast"
2062
+ }