File size: 4,648 Bytes
ecde168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
---
library_name: transformers
license: llama3
datasets:
- aqua_rat
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
---

# Smaug-Llama-3-70B-Instruct

### Built with Meta Llama 3


![image/png](/static-proxy?url=https%3A%2F%2Fcdn-uploads.huggingface.co%2Fproduction%2Fuploads%2F64c14f6b02e1f8f67c73bd05%2FZxYuHKmU_AtuEJbGtuEBC.png%3C%2Fspan%3E)

This model was built using a new Smaug recipe  for improving performance on real world multi-turn conversations applied to 
[meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

The model outperforms Llama-3-70B-Instruct substantially, and is on par with GPT-4-Turbo, on MT-Bench (see below).

EDIT: Smaug-Llama-3-70B-Instruct is the top open source model on Arena-Hard currently! It is also nearly on par with Claude Opus - see below.

We are conducting additional benchmark evaluations and will add those when available.

### Model Description

- **Developed by:** [Abacus.AI](https://abacus.ai)
- **License:** https://llama.meta.com/llama3/license/
- **Finetuned from model:** [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct).

## How to use

The prompt format is unchanged from Llama 3 70B Instruct.

### Use with transformers

See the snippet below for usage with Transformers:

```python
import transformers
import torch

model_id = "abacusai/Smaug-Llama-3-70B-Instruct"

pipeline = transformers.pipeline(
    "text-generation",
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]

prompt = pipeline.tokenizer.apply_chat_template(
		messages, 
		tokenize=False, 
		add_generation_prompt=True
)

terminators = [
    pipeline.tokenizer.eos_token_id,
    pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]

outputs = pipeline(
    prompt,
    max_new_tokens=256,
    eos_token_id=terminators,
    do_sample=True,
    temperature=0.6,
    top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```


## Evaluation

### Arena-Hard

Score vs selected others (sourced from: (https://lmsys.org/blog/2024-04-19-arena-hard/#full-leaderboard-with-gpt-4-turbo-as-judge)). GPT-4o and Gemini-1.5-pro-latest were missing from the original blob post, and we produced those numbers from a local run using the same methodology. 

| Model | Score | 95% Confidence Interval | Average Tokens |
| :---- | ---------: | ----------: | ------: |
| GPT-4-Turbo-2024-04-09 | 82.6  | (-1.8, 1.6)  | 662 |
| GPT-4o | 78.3  | (-2.4, 2.1)  | 685 |
| Gemini-1.5-pro-latest | 72.1  | (-2.3, 2.2)  | 630 |
| Claude-3-Opus-20240229 | 60.4  | (-3.3, 2.4)  | 541 |
| **Smaug-Llama-3-70B-Instruct** | 56.7  | (-2.2, 2.6)  | 661 |
| GPT-4-0314 | 50.0  | (-0.0, 0.0)  | 423 |
| Claude-3-Sonnet-20240229 | 46.8  | (-2.1, 2.2)  | 552 |
| Llama-3-70B-Instruct | 41.1  | (-2.5, 2.4)  | 583 |
| GPT-4-0613 | 37.9  | (-2.2, 2.0)  | 354 |
| Mistral-Large-2402 | 37.7 | (-1.9, 2.6)  | 400 |
| Mixtral-8x22B-Instruct-v0.1 | 36.4  | (-2.7, 2.9)  | 430 |
| Qwen1.5-72B-Chat | 36.1 | (-2.5, 2.2)  | 474 |
| Command-R-Plus | 33.1 | (-2.1, 2.2)  | 541 |
| Mistral-Medium | 31.9  | (-2.3, 2.4)  | 485 |
| GPT-3.5-Turbo-0613 | 24.8 | (-1.6, 2.0)  | 401 |

### MT-Bench

```
########## First turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         1     9.40000                                                                                                                            
GPT-4-Turbo                        1     9.37500
Meta-Llama-3-70B-Instruct          1     9.21250 
########## Second turn ##########
                   score
model             turn
Smaug-Llama-3-70B-Instruct         2     9.0125
GPT-4-Turbo                        2     9.0000
Meta-Llama-3-70B-Instruct          2     8.8000
########## Average ##########
                 score
model
Smaug-Llama-3-70B-Instruct          9.206250
GPT-4-Turbo                         9.187500
Meta-Llama-3-70B-Instruct           9.006250
```

| Model | First turn | Second Turn | Average |
| :---- | ---------: | ----------: | ------: |
| **Smaug-Llama-3-70B-Instruct**  | 9.40 | 9.01 | 9.21 |
| GPT-4-Turbo | 9.38 |  9.00 | 9.19 |
| Meta-Llama-3-70B-Instruct | 9.21 |  8.80 | 9.01 |

This version of Smaug uses new techniques and new data compared to [Smaug-72B](https://huggingface.co/abacusai/Smaug-72B-v0.1), and more information will be released later on. For now, see the previous Smaug paper: https://arxiv.org/abs/2402.13228.