File size: 5,831 Bytes
de52fff af2b644 2827974 af2b644 3064891 de52fff af2b644 de52fff af2b644 de52fff af2b644 de52fff 694c35d de52fff af2b644 de52fff c62cf90 ccd4c2d c62cf90 af2b644 de52fff af2b644 de52fff af2b644 de52fff af2b644 de52fff af2b644 de52fff 3064891 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
---
language:
- en
license: apache-2.0
tags:
- open-source
- code
- math
- chemistry
- biology
- text-generation
- question-answering
datasets:
- Locutusque/OpenCerebrum-dpo
pipeline_tag: text-generation
model-index:
- name: OpenCerebrum-1.0-7b-DPO
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.71
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 84.33
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 62.59
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 44.91
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 80.11
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 42.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Locutusque/OpenCerebrum-1.0-7b-DPO
name: Open LLM Leaderboard
---
# OpenCerebrum-1.0-7B-DPO
OpenCerebrum-1.0-7B-DPO is an open-source language model fine-tuned from the alpindale/Mistral-7B-v0.2-hf base model on a diverse dataset aimed at replicating capabilities of Aether Research's proprietary Cerebrum model.
The model was fine-tuned on approximately 21,000 examples across 6 datasets spanning coding, math, science, reasoning, and general instruction-following. The goal was to assemble public datasets that could help the model achieve strong performance on benchmarks where Cerebrum excels.
I used the ChatML prompt format to train this model.
## Model Details
- **Base Model:** alpindale/Mistral-7B-v0.2-hf
- **Parameters:** 7 billion
- **Fine-Tuning Dataset Size:** ~21,000 examples
- **Fine-Tuning Data:** Amalgamation of 6 public datasets
- **Language:** English
- **License:** Apache 2.0
## Quants
- **ExLlamaV2:** https://huggingface.co/bartowski/OpenCerebrum-1.0-7b-DPO-exl2
- **GGUF:** https://huggingface.co/bartowski/OpenCerebrum-1.0-7b-DPO-GGUF
- **AWQ:** https://huggingface.co/solidrust/OpenCerebrum-1.0-7b-DPO-AWQ
## Intended Use
OpenCerebrum-1.0-7B-DPO is intended to be a powerful open-source model for coding, math, science, and general question-answering and text generation tasks. Its diverse fine-tuning data aims to equip it with broad knowledge and reasoning capabilities.
However, as an open-source replica trained on a subset of data compared to the original Cerebrum, it may not match Cerebrum's full performance. Additionally, biases and limitations of the fine-tuning data may be reflected in the model's outputs.
## Limitations and Biases
- The model may have biases and limitations inherited from its fine-tuning datasets. Thorough testing is needed to characterize these.
- With 21,000 training examples, the fine-tuning data is still limited compared to the proprietary Cerebrum data.
- As the model is based on a 7B parameter model, it has computational and memory constraints compared to larger models.
## Training Details
The model was fine-tuned on the 6 datasets listed in the Datasets section, totaling approximately 21,000 examples. In the future, the fine-tuning dataset may be condensed to more closely match the ~500 example dataset reputedly used for the original Cerebrum model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Locutusque__OpenCerebrum-1.0-7b-DPO)
| Metric |Value|
|---------------------------------|----:|
|Avg. |62.78|
|AI2 Reasoning Challenge (25-Shot)|62.71|
|HellaSwag (10-Shot) |84.33|
|MMLU (5-Shot) |62.59|
|TruthfulQA (0-shot) |44.91|
|Winogrande (5-shot) |80.11|
|GSM8k (5-shot) |42.00|
|