--- base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0422MADP6 results: [] --- # V0422MADP6 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0611 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 60 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.9237 | 0.09 | 10 | 0.5636 | | 0.2396 | 0.18 | 20 | 0.1140 | | 0.1129 | 0.27 | 30 | 0.0962 | | 0.1009 | 0.36 | 40 | 0.0912 | | 0.0866 | 0.45 | 50 | 0.0752 | | 0.0838 | 0.54 | 60 | 0.0716 | | 0.0761 | 0.63 | 70 | 0.0737 | | 0.0775 | 0.73 | 80 | 0.0766 | | 0.0789 | 0.82 | 90 | 0.0711 | | 0.0799 | 0.91 | 100 | 0.0681 | | 0.0754 | 1.0 | 110 | 0.0662 | | 0.0621 | 1.09 | 120 | 0.0666 | | 0.0665 | 1.18 | 130 | 0.0840 | | 0.0693 | 1.27 | 140 | 0.0619 | | 0.0609 | 1.36 | 150 | 0.0647 | | 0.062 | 1.45 | 160 | 0.0601 | | 0.0582 | 1.54 | 170 | 0.0578 | | 0.0634 | 1.63 | 180 | 0.0575 | | 0.0579 | 1.72 | 190 | 0.0621 | | 0.065 | 1.81 | 200 | 0.0574 | | 0.0522 | 1.9 | 210 | 0.0624 | | 0.0517 | 1.99 | 220 | 0.0585 | | 0.0403 | 2.08 | 230 | 0.0630 | | 0.0433 | 2.18 | 240 | 0.0628 | | 0.0398 | 2.27 | 250 | 0.0627 | | 0.0379 | 2.36 | 260 | 0.0656 | | 0.0431 | 2.45 | 270 | 0.0629 | | 0.0387 | 2.54 | 280 | 0.0643 | | 0.0359 | 2.63 | 290 | 0.0633 | | 0.0419 | 2.72 | 300 | 0.0628 | | 0.0438 | 2.81 | 310 | 0.0615 | | 0.0398 | 2.9 | 320 | 0.0612 | | 0.0432 | 2.99 | 330 | 0.0611 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.14.1