--- license: mit base_model: microsoft/phi-2 tags: - generated_from_trainer model-index: - name: V0309O4 results: [] --- # V0309O4 This model is a fine-tuned version of [microsoft/phi-2](https://huggingface.co/microsoft/phi-2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 20 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 2.1847 | 0.09 | 10 | 1.3549 | | 0.6355 | 0.17 | 20 | 0.1145 | | 0.1343 | 0.26 | 30 | 0.0832 | | 0.1143 | 0.34 | 40 | 0.0792 | | 0.1074 | 0.43 | 50 | 0.0765 | | 0.0964 | 0.51 | 60 | 0.0726 | | 0.0886 | 0.6 | 70 | 0.0719 | | 0.0942 | 0.68 | 80 | 0.0704 | | 0.0827 | 0.77 | 90 | 0.0704 | | 0.0819 | 0.85 | 100 | 0.0649 | | 0.0831 | 0.94 | 110 | 0.0640 | | 0.0824 | 1.02 | 120 | 0.0615 | | 0.0778 | 1.11 | 130 | 0.0694 | | 0.0743 | 1.19 | 140 | 0.0591 | | 0.0728 | 1.28 | 150 | 0.0610 | | 0.0735 | 1.37 | 160 | 0.0647 | | 0.0712 | 1.45 | 170 | 0.0660 | | 0.0693 | 1.54 | 180 | 0.0694 | | 0.0716 | 1.62 | 190 | 0.0682 | | 0.0664 | 1.71 | 200 | 0.0691 | | 0.0705 | 1.79 | 210 | 0.0664 | | 0.0624 | 1.88 | 220 | 0.0678 | | 0.0632 | 1.96 | 230 | 0.0682 | | 0.0638 | 2.05 | 240 | 0.0690 | | 0.055 | 2.13 | 250 | 0.0692 | | 0.0584 | 2.22 | 260 | 0.0710 | | 0.0539 | 2.3 | 270 | 0.0694 | | 0.0588 | 2.39 | 280 | 0.0668 | | 0.0608 | 2.47 | 290 | 0.0661 | | 0.0589 | 2.56 | 300 | 0.0665 | | 0.0633 | 2.65 | 310 | 0.0660 | | 0.0539 | 2.73 | 320 | 0.0662 | | 0.0538 | 2.82 | 330 | 0.0665 | | 0.0529 | 2.9 | 340 | 0.0665 | | 0.0561 | 2.99 | 350 | 0.0667 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.14.1