Liphos commited on
Commit
d7066ac
·
1 Parent(s): c413d61

quick_test_PPO_lunarlander

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 256.79 +/- 22.50
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa7b90f7a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa7b90f7af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa7b90f7b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa7b90f7c10>", "_build": "<function ActorCriticPolicy._build at 0x7fa7b90f7ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa7b90f7d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa7b90f7dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa7b90f7e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa7b90f7ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa7b90f7f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa7b90f9040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa7b90f4330>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1007616, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671820142329190378, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMbPD4H/Z4/DUggP5MFF7+nxqM+1lRkPgAAAAAAAAAAAA53vXgRgT8Af0m+QXYPv2THaL0Ns/u8AAAAAAAAAADwqXa+a52oPqaWDD2EATy+qm/3O6bhVTwAAAAAAAAAAJr5uTyCALQ/tvbfPsuBwb0icwC8ihcsPQAAAAAAAAAAAJARPXoRmT8SNDo+OUsavzOQSD3IZFQ9AAAAAAAAAADNHGm94UCAunneJDxZPs+40jeeOYcGxbcAAIA/AACAP7McAL0bJrY/gzD9vnryvzxfCHA7/trIvQAAAAAAAAAAWuSmvcnMsD9hFsy+HxSevmJCYL1CqSq+AAAAAAAAAADNOX09rsGRunheK7OPVAIwxkCeubMlzzMAAIA/AACAP8DELr67Gaq8BQKDufUCAbg0MxY+0k+3OAAAgD8AAIA/ZnGBPEyL+j7m8QW9/iOvvnlwojwl7F29AAAAAAAAAAAAgKy9w4lgumS/kTrsUMM1XpM6O9IKqLkAAAAAAAAAAC2RPL64tsu5heugPZfUiDvjeHG8hmfZvQAAgD8AAIA/naWVvqVIFz87wCs+VxvKvg4GUb7bJIc+AAAAAAAAAACTsgI+nkhpP7XX4j2yfce+7i75PZUeQ70AAAAAAAAAAGbLxzxX0hs/GvYQPTl32L4phAk9c5rXOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7IhDNtBkcECUhpRSlIwBbJRNIgGMAXSUR0CQsIkCFK02dX2UKGgGaAloD0MIAAFr1S4Aa0CUhpRSlGgVS+1oFkdAkLL3pSrHVHV9lChoBmgJaA9DCO/hkuNOEXFAlIaUUpRoFU0DAWgWR0CQswVBUrCndX2UKGgGaAloD0MIIZViR+P4bUCUhpRSlGgVS+xoFkdAkLMG/vfCRHV9lChoBmgJaA9DCOWYLO4/tG1AlIaUUpRoFUv7aBZHQJC7UYIjW091fZQoaAZoCWgPQwjtYwW/DfdvQJSGlFKUaBVL7GgWR0CQu7a5wwTNdX2UKGgGaAloD0MI/0KPGH1HcECUhpRSlGgVTRUBaBZHQJC8ioESuhd1fZQoaAZoCWgPQwhGCmXhKyNxQJSGlFKUaBVL4WgWR0CQvK4HoouxdX2UKGgGaAloD0MIr3d/vJfCcECUhpRSlGgVS+RoFkdAkMHn8XN1Q3V9lChoBmgJaA9DCKVKlL2lql1AlIaUUpRoFU3oA2gWR0CQw/KIBRyfdX2UKGgGaAloD0MIAVEwYwpab0CUhpRSlGgVS/RoFkdAkMU8URFqjHV9lChoBmgJaA9DCD4FwHhGTXBAlIaUUpRoFU0PAWgWR0CQxnppvgm7dX2UKGgGaAloD0MIX3089B20cECUhpRSlGgVS+9oFkdAkMcbOmixmnV9lChoBmgJaA9DCIo/ijrzvm9AlIaUUpRoFUvoaBZHQJDH2L9/BnB1fZQoaAZoCWgPQwhUHt0IC2pjQJSGlFKUaBVN6ANoFkdAkMfmce8wpXV9lChoBmgJaA9DCB/bMuAsPWxAlIaUUpRoFU1FAWgWR0CQyQ7JGOMmdX2UKGgGaAloD0MIqgt4mWFNb0CUhpRSlGgVTTYBaBZHQJDLAJC0F8p1fZQoaAZoCWgPQwh/EwoR8JhvQJSGlFKUaBVL9mgWR0CQzS44ZMtcdX2UKGgGaAloD0MIQbyuX7DlZECUhpRSlGgVTegDaBZHQJDOsFfReC11fZQoaAZoCWgPQwjkh0oj5k9wQJSGlFKUaBVL5GgWR0CQz2j0cwQEdX2UKGgGaAloD0MIxZJy9zl/bkCUhpRSlGgVTR8BaBZHQJDQ2hEjPfN1fZQoaAZoCWgPQwjRArSt5jJqQJSGlFKUaBVNCgFoFkdAkNjP69CeE3V9lChoBmgJaA9DCJCEfTuJ/1hAlIaUUpRoFU3oA2gWR0CQ2Uf4h2W6dX2UKGgGaAloD0MIpkV9kvvCcUCUhpRSlGgVS/xoFkdAkNlsHryDqXV9lChoBmgJaA9DCK6BrRKs7XBAlIaUUpRoFUv8aBZHQJDZeKoAGSp1fZQoaAZoCWgPQwgRb51/O7ljQJSGlFKUaBVN6ANoFkdAkNow8nuy/3V9lChoBmgJaA9DCNECtK1m+W5AlIaUUpRoFU0CAWgWR0CQ2qnpjc2zdX2UKGgGaAloD0MIgLbVrLP5bECUhpRSlGgVS+1oFkdAkNuRB3RoiHV9lChoBmgJaA9DCFoPXyaK/m1AlIaUUpRoFU1RA2gWR0CQ3Y8uzyBkdX2UKGgGaAloD0MIbCIzF7gwb0CUhpRSlGgVS/5oFkdAkN4nVXmvGXV9lChoBmgJaA9DCIjX9Qv2L25AlIaUUpRoFUvfaBZHQJDeQBCD28J1fZQoaAZoCWgPQwjnAMEcPUhgQJSGlFKUaBVN6ANoFkdAkN58nZ00WXV9lChoBmgJaA9DCHctIR/06mNAlIaUUpRoFU3oA2gWR0CQ3rFJQLuydX2UKGgGaAloD0MIiXjr/BvbcECUhpRSlGgVS/1oFkdAkN+onOSntXV9lChoBmgJaA9DCGPwMO1bS3BAlIaUUpRoFUv/aBZHQJDgxPoFFDx1fZQoaAZoCWgPQwil3H2Oj9lwQJSGlFKUaBVL+WgWR0CQ4h8nNPgvdX2UKGgGaAloD0MIECGunH1scECUhpRSlGgVTQEBaBZHQJDiTehwl0J1fZQoaAZoCWgPQwh5sMVun+drQJSGlFKUaBVL7WgWR0CQ4ufcer+6dX2UKGgGaAloD0MI9gfKbXvfcECUhpRSlGgVTRYBaBZHQJDjMHgP3BZ1fZQoaAZoCWgPQwgXKZSFL69pQJSGlFKUaBVNMgFoFkdAkOOnxz7uUnV9lChoBmgJaA9DCO/FF+1x6m9AlIaUUpRoFU0AAWgWR0CQ5Hf5k9U0dX2UKGgGaAloD0MIcyuE1VjtcECUhpRSlGgVS+NoFkdAkOVCtFKChHV9lChoBmgJaA9DCMd/gSBA229AlIaUUpRoFUv4aBZHQJDmrQF9roJ1fZQoaAZoCWgPQwh4CU59oK5vQJSGlFKUaBVL+2gWR0CQ5wws5GSZdX2UKGgGaAloD0MIEolCy7pWb0CUhpRSlGgVS/1oFkdAkOdaCg9Ne3V9lChoBmgJaA9DCHf1KjK6F29AlIaUUpRoFU0QAWgWR0CQ52/QjUutdX2UKGgGaAloD0MINxd/2xOab0CUhpRSlGgVTQQBaBZHQJDooMCtA9p1fZQoaAZoCWgPQwgRNdHno2FfQJSGlFKUaBVN6ANoFkdAkOpgH/tICnV9lChoBmgJaA9DCEkPQ6sT3nBAlIaUUpRoFUv1aBZHQJDyF5UtI091fZQoaAZoCWgPQwiWPnRBffptQJSGlFKUaBVL7mgWR0CQ8iLrHEMtdX2UKGgGaAloD0MIbEHvjSFhb0CUhpRSlGgVS+VoFkdAkPJMYZVGTnV9lChoBmgJaA9DCPQxHxCohnBAlIaUUpRoFU0cAWgWR0CQ8qECvHLidX2UKGgGaAloD0MI83aE04LQb0CUhpRSlGgVS/toFkdAkPSa0tyxRnV9lChoBmgJaA9DCGWJzjIL9m9AlIaUUpRoFU0TAWgWR0CQ9KSflIVedX2UKGgGaAloD0MIvcYuUT25bkCUhpRSlGgVTWABaBZHQJD1JW3jMmp1fZQoaAZoCWgPQwgkXp7OFR9vQJSGlFKUaBVL/2gWR0CQ9hF49ovjdX2UKGgGaAloD0MIr+qsFpgrcECUhpRSlGgVTRQBaBZHQJD3bvXsgMd1fZQoaAZoCWgPQwiQatjvCeJpQJSGlFKUaBVNLQFoFkdAkPf9UwSJ0nV9lChoBmgJaA9DCGDKwAEtG1lAlIaUUpRoFU3oA2gWR0CQ+Zu/DcdpdX2UKGgGaAloD0MIL1G9NbDabECUhpRSlGgVS/BoFkdAkPquNPxhD3V9lChoBmgJaA9DCL7cJ0dBfnBAlIaUUpRoFUv6aBZHQJD61NSIgvF1fZQoaAZoCWgPQwiO5V31gGtqQJSGlFKUaBVNIQFoFkdAkPsumR/3FnV9lChoBmgJaA9DCMgoz7ycGnBAlIaUUpRoFUvaaBZHQJD8V0U47zV1fZQoaAZoCWgPQwicUIiAQ/9vQJSGlFKUaBVL9WgWR0CQ/VtIClrNdX2UKGgGaAloD0MIYobGEwE0cECUhpRSlGgVS/loFkdAkP4WNFSbY3V9lChoBmgJaA9DCAFuFi8W5m1AlIaUUpRoFUvraBZHQJD+mFbmlqJ1fZQoaAZoCWgPQwiNtiqJ7L9tQJSGlFKUaBVL/WgWR0CRAN4HoouxdX2UKGgGaAloD0MII/WeymmUa0CUhpRSlGgVS+BoFkdAkQIZW7voeXV9lChoBmgJaA9DCHXlszyPCnBAlIaUUpRoFU0TAWgWR0CRAmKKpDNRdX2UKGgGaAloD0MImbfqOhTBcECUhpRSlGgVTboBaBZHQJECwmG/N7l1fZQoaAZoCWgPQwgmpguxOjpxQJSGlFKUaBVL3mgWR0CRA0Dfm9xqdX2UKGgGaAloD0MIiEm4kAcicUCUhpRSlGgVS+xoFkdAkQOgDA8B/HV9lChoBmgJaA9DCCQrvwzGBF1AlIaUUpRoFU3oA2gWR0CRCvyXUpd9dX2UKGgGaAloD0MINUQV/ozlbECUhpRSlGgVS/poFkdAkQs04R28qXV9lChoBmgJaA9DCGZpp+ZyQHFAlIaUUpRoFUv0aBZHQJEMLZFocrB1fZQoaAZoCWgPQwjF4jeFFRNvQJSGlFKUaBVL4GgWR0CRDGJKraM8dX2UKGgGaAloD0MIKjbmdYQGcECUhpRSlGgVS9toFkdAkQ12mHgxanV9lChoBmgJaA9DCFsJ3SVxwG9AlIaUUpRoFUvraBZHQJER5X6qKgt1fZQoaAZoCWgPQwg6zJcX4B5xQJSGlFKUaBVL42gWR0CREllyimEXdX2UKGgGaAloD0MIo+nsZHCrYUCUhpRSlGgVTegDaBZHQJESu3WnTAp1fZQoaAZoCWgPQwhO1T2y+ZRwQJSGlFKUaBVL/GgWR0CREwaiblRxdX2UKGgGaAloD0MIiPccWI5ub0CUhpRSlGgVTS0BaBZHQJETex3V0911fZQoaAZoCWgPQwigGi/dpM5xQJSGlFKUaBVL6GgWR0CRE5Cq6vq1dX2UKGgGaAloD0MIwf9WsiNTcUCUhpRSlGgVS95oFkdAkRQHsgMc63V9lChoBmgJaA9DCKKXUSy3m25AlIaUUpRoFUveaBZHQJEUQt+TeO51fZQoaAZoCWgPQwgvGFxzx9VsQJSGlFKUaBVL7WgWR0CRFhxQzk6tdX2UKGgGaAloD0MILPTBMrb5bkCUhpRSlGgVTUUBaBZHQJEWwBS1map1fZQoaAZoCWgPQwh4KXXJOHNvQJSGlFKUaBVL52gWR0CRFvsJIDoydX2UKGgGaAloD0MIrROX41UhcUCUhpRSlGgVTQwBaBZHQJEXDb5/LDB1fZQoaAZoCWgPQwhvEK0V7YlhQJSGlFKUaBVN6ANoFkdAkRnk7OmixnV9lChoBmgJaA9DCHdqLjcYPGNAlIaUUpRoFU3oA2gWR0CRG13I+4b0dX2UKGgGaAloD0MIM+GX+vm0bECUhpRSlGgVS+9oFkdAkRuRqsU7CHV9lChoBmgJaA9DCNaO4hz1DGxAlIaUUpRoFUv/aBZHQJEb03VCojx1fZQoaAZoCWgPQwibVDTWfpptQJSGlFKUaBVL72gWR0CRHJqfvnbJdX2UKGgGaAloD0MIzVzg8hiLcECUhpRSlGgVS/loFkdAkR2ahcqvvHV9lChoBmgJaA9DCDaxwFc0L3BAlIaUUpRoFUv2aBZHQJEdtiWmgrZ1fZQoaAZoCWgPQwj7rgj+N5VxQJSGlFKUaBVNHgFoFkdAkR4A5R0lq3V9lChoBmgJaA9DCIyFIXK6NXJAlIaUUpRoFUvBaBZHQJEeGZSeiBZ1fZQoaAZoCWgPQwgF4J9SpShuQJSGlFKUaBVNHgFoFkdAkR5mpda+vnV9lChoBmgJaA9DCPrRcMpcLmVAlIaUUpRoFU3oA2gWR0CRHm/6O5rhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2460, "n_steps": 512, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 512, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
quick_ppo_LunarLander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5783299719d90605523cc03775b5c65b5756c483cbff1e77704dc3c62232ca78
3
+ size 147143
quick_ppo_LunarLander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
quick_ppo_LunarLander/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa7b90f7a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa7b90f7af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa7b90f7b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa7b90f7c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fa7b90f7ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fa7b90f7d30>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa7b90f7dc0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fa7b90f7e50>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa7b90f7ee0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa7b90f7f70>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa7b90f9040>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fa7b90f4330>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 1007616,
46
+ "_total_timesteps": 1000000.0,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1671820142329190378,
51
+ "learning_rate": 0.001,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADMbPD4H/Z4/DUggP5MFF7+nxqM+1lRkPgAAAAAAAAAAAA53vXgRgT8Af0m+QXYPv2THaL0Ns/u8AAAAAAAAAADwqXa+a52oPqaWDD2EATy+qm/3O6bhVTwAAAAAAAAAAJr5uTyCALQ/tvbfPsuBwb0icwC8ihcsPQAAAAAAAAAAAJARPXoRmT8SNDo+OUsavzOQSD3IZFQ9AAAAAAAAAADNHGm94UCAunneJDxZPs+40jeeOYcGxbcAAIA/AACAP7McAL0bJrY/gzD9vnryvzxfCHA7/trIvQAAAAAAAAAAWuSmvcnMsD9hFsy+HxSevmJCYL1CqSq+AAAAAAAAAADNOX09rsGRunheK7OPVAIwxkCeubMlzzMAAIA/AACAP8DELr67Gaq8BQKDufUCAbg0MxY+0k+3OAAAgD8AAIA/ZnGBPEyL+j7m8QW9/iOvvnlwojwl7F29AAAAAAAAAAAAgKy9w4lgumS/kTrsUMM1XpM6O9IKqLkAAAAAAAAAAC2RPL64tsu5heugPZfUiDvjeHG8hmfZvQAAgD8AAIA/naWVvqVIFz87wCs+VxvKvg4GUb7bJIc+AAAAAAAAAACTsgI+nkhpP7XX4j2yfce+7i75PZUeQ70AAAAAAAAAAGbLxzxX0hs/GvYQPTl32L4phAk9c5rXOwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVSBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI7IhDNtBkcECUhpRSlIwBbJRNIgGMAXSUR0CQsIkCFK02dX2UKGgGaAloD0MIAAFr1S4Aa0CUhpRSlGgVS+1oFkdAkLL3pSrHVHV9lChoBmgJaA9DCO/hkuNOEXFAlIaUUpRoFU0DAWgWR0CQswVBUrCndX2UKGgGaAloD0MIIZViR+P4bUCUhpRSlGgVS+xoFkdAkLMG/vfCRHV9lChoBmgJaA9DCOWYLO4/tG1AlIaUUpRoFUv7aBZHQJC7UYIjW091fZQoaAZoCWgPQwjtYwW/DfdvQJSGlFKUaBVL7GgWR0CQu7a5wwTNdX2UKGgGaAloD0MI/0KPGH1HcECUhpRSlGgVTRUBaBZHQJC8ioESuhd1fZQoaAZoCWgPQwhGCmXhKyNxQJSGlFKUaBVL4WgWR0CQvK4HoouxdX2UKGgGaAloD0MIr3d/vJfCcECUhpRSlGgVS+RoFkdAkMHn8XN1Q3V9lChoBmgJaA9DCKVKlL2lql1AlIaUUpRoFU3oA2gWR0CQw/KIBRyfdX2UKGgGaAloD0MIAVEwYwpab0CUhpRSlGgVS/RoFkdAkMU8URFqjHV9lChoBmgJaA9DCD4FwHhGTXBAlIaUUpRoFU0PAWgWR0CQxnppvgm7dX2UKGgGaAloD0MIX3089B20cECUhpRSlGgVS+9oFkdAkMcbOmixmnV9lChoBmgJaA9DCIo/ijrzvm9AlIaUUpRoFUvoaBZHQJDH2L9/BnB1fZQoaAZoCWgPQwhUHt0IC2pjQJSGlFKUaBVN6ANoFkdAkMfmce8wpXV9lChoBmgJaA9DCB/bMuAsPWxAlIaUUpRoFU1FAWgWR0CQyQ7JGOMmdX2UKGgGaAloD0MIqgt4mWFNb0CUhpRSlGgVTTYBaBZHQJDLAJC0F8p1fZQoaAZoCWgPQwh/EwoR8JhvQJSGlFKUaBVL9mgWR0CQzS44ZMtcdX2UKGgGaAloD0MIQbyuX7DlZECUhpRSlGgVTegDaBZHQJDOsFfReC11fZQoaAZoCWgPQwjkh0oj5k9wQJSGlFKUaBVL5GgWR0CQz2j0cwQEdX2UKGgGaAloD0MIxZJy9zl/bkCUhpRSlGgVTR8BaBZHQJDQ2hEjPfN1fZQoaAZoCWgPQwjRArSt5jJqQJSGlFKUaBVNCgFoFkdAkNjP69CeE3V9lChoBmgJaA9DCJCEfTuJ/1hAlIaUUpRoFU3oA2gWR0CQ2Uf4h2W6dX2UKGgGaAloD0MIpkV9kvvCcUCUhpRSlGgVS/xoFkdAkNlsHryDqXV9lChoBmgJaA9DCK6BrRKs7XBAlIaUUpRoFUv8aBZHQJDZeKoAGSp1fZQoaAZoCWgPQwgRb51/O7ljQJSGlFKUaBVN6ANoFkdAkNow8nuy/3V9lChoBmgJaA9DCNECtK1m+W5AlIaUUpRoFU0CAWgWR0CQ2qnpjc2zdX2UKGgGaAloD0MIgLbVrLP5bECUhpRSlGgVS+1oFkdAkNuRB3RoiHV9lChoBmgJaA9DCFoPXyaK/m1AlIaUUpRoFU1RA2gWR0CQ3Y8uzyBkdX2UKGgGaAloD0MIbCIzF7gwb0CUhpRSlGgVS/5oFkdAkN4nVXmvGXV9lChoBmgJaA9DCIjX9Qv2L25AlIaUUpRoFUvfaBZHQJDeQBCD28J1fZQoaAZoCWgPQwjnAMEcPUhgQJSGlFKUaBVN6ANoFkdAkN58nZ00WXV9lChoBmgJaA9DCHctIR/06mNAlIaUUpRoFU3oA2gWR0CQ3rFJQLuydX2UKGgGaAloD0MIiXjr/BvbcECUhpRSlGgVS/1oFkdAkN+onOSntXV9lChoBmgJaA9DCGPwMO1bS3BAlIaUUpRoFUv/aBZHQJDgxPoFFDx1fZQoaAZoCWgPQwil3H2Oj9lwQJSGlFKUaBVL+WgWR0CQ4h8nNPgvdX2UKGgGaAloD0MIECGunH1scECUhpRSlGgVTQEBaBZHQJDiTehwl0J1fZQoaAZoCWgPQwh5sMVun+drQJSGlFKUaBVL7WgWR0CQ4ufcer+6dX2UKGgGaAloD0MI9gfKbXvfcECUhpRSlGgVTRYBaBZHQJDjMHgP3BZ1fZQoaAZoCWgPQwgXKZSFL69pQJSGlFKUaBVNMgFoFkdAkOOnxz7uUnV9lChoBmgJaA9DCO/FF+1x6m9AlIaUUpRoFU0AAWgWR0CQ5Hf5k9U0dX2UKGgGaAloD0MIcyuE1VjtcECUhpRSlGgVS+NoFkdAkOVCtFKChHV9lChoBmgJaA9DCMd/gSBA229AlIaUUpRoFUv4aBZHQJDmrQF9roJ1fZQoaAZoCWgPQwh4CU59oK5vQJSGlFKUaBVL+2gWR0CQ5wws5GSZdX2UKGgGaAloD0MIEolCy7pWb0CUhpRSlGgVS/1oFkdAkOdaCg9Ne3V9lChoBmgJaA9DCHf1KjK6F29AlIaUUpRoFU0QAWgWR0CQ52/QjUutdX2UKGgGaAloD0MINxd/2xOab0CUhpRSlGgVTQQBaBZHQJDooMCtA9p1fZQoaAZoCWgPQwgRNdHno2FfQJSGlFKUaBVN6ANoFkdAkOpgH/tICnV9lChoBmgJaA9DCEkPQ6sT3nBAlIaUUpRoFUv1aBZHQJDyF5UtI091fZQoaAZoCWgPQwiWPnRBffptQJSGlFKUaBVL7mgWR0CQ8iLrHEMtdX2UKGgGaAloD0MIbEHvjSFhb0CUhpRSlGgVS+VoFkdAkPJMYZVGTnV9lChoBmgJaA9DCPQxHxCohnBAlIaUUpRoFU0cAWgWR0CQ8qECvHLidX2UKGgGaAloD0MI83aE04LQb0CUhpRSlGgVS/toFkdAkPSa0tyxRnV9lChoBmgJaA9DCGWJzjIL9m9AlIaUUpRoFU0TAWgWR0CQ9KSflIVedX2UKGgGaAloD0MIvcYuUT25bkCUhpRSlGgVTWABaBZHQJD1JW3jMmp1fZQoaAZoCWgPQwgkXp7OFR9vQJSGlFKUaBVL/2gWR0CQ9hF49ovjdX2UKGgGaAloD0MIr+qsFpgrcECUhpRSlGgVTRQBaBZHQJD3bvXsgMd1fZQoaAZoCWgPQwiQatjvCeJpQJSGlFKUaBVNLQFoFkdAkPf9UwSJ0nV9lChoBmgJaA9DCGDKwAEtG1lAlIaUUpRoFU3oA2gWR0CQ+Zu/DcdpdX2UKGgGaAloD0MIL1G9NbDabECUhpRSlGgVS/BoFkdAkPquNPxhD3V9lChoBmgJaA9DCL7cJ0dBfnBAlIaUUpRoFUv6aBZHQJD61NSIgvF1fZQoaAZoCWgPQwiO5V31gGtqQJSGlFKUaBVNIQFoFkdAkPsumR/3FnV9lChoBmgJaA9DCMgoz7ycGnBAlIaUUpRoFUvaaBZHQJD8V0U47zV1fZQoaAZoCWgPQwicUIiAQ/9vQJSGlFKUaBVL9WgWR0CQ/VtIClrNdX2UKGgGaAloD0MIYobGEwE0cECUhpRSlGgVS/loFkdAkP4WNFSbY3V9lChoBmgJaA9DCAFuFi8W5m1AlIaUUpRoFUvraBZHQJD+mFbmlqJ1fZQoaAZoCWgPQwiNtiqJ7L9tQJSGlFKUaBVL/WgWR0CRAN4HoouxdX2UKGgGaAloD0MII/WeymmUa0CUhpRSlGgVS+BoFkdAkQIZW7voeXV9lChoBmgJaA9DCHXlszyPCnBAlIaUUpRoFU0TAWgWR0CRAmKKpDNRdX2UKGgGaAloD0MImbfqOhTBcECUhpRSlGgVTboBaBZHQJECwmG/N7l1fZQoaAZoCWgPQwgmpguxOjpxQJSGlFKUaBVL3mgWR0CRA0Dfm9xqdX2UKGgGaAloD0MIiEm4kAcicUCUhpRSlGgVS+xoFkdAkQOgDA8B/HV9lChoBmgJaA9DCCQrvwzGBF1AlIaUUpRoFU3oA2gWR0CRCvyXUpd9dX2UKGgGaAloD0MINUQV/ozlbECUhpRSlGgVS/poFkdAkQs04R28qXV9lChoBmgJaA9DCGZpp+ZyQHFAlIaUUpRoFUv0aBZHQJEMLZFocrB1fZQoaAZoCWgPQwjF4jeFFRNvQJSGlFKUaBVL4GgWR0CRDGJKraM8dX2UKGgGaAloD0MIKjbmdYQGcECUhpRSlGgVS9toFkdAkQ12mHgxanV9lChoBmgJaA9DCFsJ3SVxwG9AlIaUUpRoFUvraBZHQJER5X6qKgt1fZQoaAZoCWgPQwg6zJcX4B5xQJSGlFKUaBVL42gWR0CREllyimEXdX2UKGgGaAloD0MIo+nsZHCrYUCUhpRSlGgVTegDaBZHQJESu3WnTAp1fZQoaAZoCWgPQwhO1T2y+ZRwQJSGlFKUaBVL/GgWR0CREwaiblRxdX2UKGgGaAloD0MIiPccWI5ub0CUhpRSlGgVTS0BaBZHQJETex3V0911fZQoaAZoCWgPQwigGi/dpM5xQJSGlFKUaBVL6GgWR0CRE5Cq6vq1dX2UKGgGaAloD0MIwf9WsiNTcUCUhpRSlGgVS95oFkdAkRQHsgMc63V9lChoBmgJaA9DCKKXUSy3m25AlIaUUpRoFUveaBZHQJEUQt+TeO51fZQoaAZoCWgPQwgvGFxzx9VsQJSGlFKUaBVL7WgWR0CRFhxQzk6tdX2UKGgGaAloD0MILPTBMrb5bkCUhpRSlGgVTUUBaBZHQJEWwBS1map1fZQoaAZoCWgPQwh4KXXJOHNvQJSGlFKUaBVL52gWR0CRFvsJIDoydX2UKGgGaAloD0MIrROX41UhcUCUhpRSlGgVTQwBaBZHQJEXDb5/LDB1fZQoaAZoCWgPQwhvEK0V7YlhQJSGlFKUaBVN6ANoFkdAkRnk7OmixnV9lChoBmgJaA9DCHdqLjcYPGNAlIaUUpRoFU3oA2gWR0CRG13I+4b0dX2UKGgGaAloD0MIM+GX+vm0bECUhpRSlGgVS+9oFkdAkRuRqsU7CHV9lChoBmgJaA9DCNaO4hz1DGxAlIaUUpRoFUv/aBZHQJEb03VCojx1fZQoaAZoCWgPQwibVDTWfpptQJSGlFKUaBVL72gWR0CRHJqfvnbJdX2UKGgGaAloD0MIzVzg8hiLcECUhpRSlGgVS/loFkdAkR2ahcqvvHV9lChoBmgJaA9DCDaxwFc0L3BAlIaUUpRoFUv2aBZHQJEdtiWmgrZ1fZQoaAZoCWgPQwj7rgj+N5VxQJSGlFKUaBVNHgFoFkdAkR4A5R0lq3V9lChoBmgJaA9DCIyFIXK6NXJAlIaUUpRoFUvBaBZHQJEeGZSeiBZ1fZQoaAZoCWgPQwgF4J9SpShuQJSGlFKUaBVNHgFoFkdAkR5mpda+vnV9lChoBmgJaA9DCPrRcMpcLmVAlIaUUpRoFU3oA2gWR0CRHm/6O5rhdWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 2460,
79
+ "n_steps": 512,
80
+ "gamma": 0.99,
81
+ "gae_lambda": 0.95,
82
+ "ent_coef": 0.0,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 512,
86
+ "n_epochs": 20,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
quick_ppo_LunarLander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:219ce42c7f1e6ef8351a8820108d029e05e44065c9d1f839abcfd6fe17a29035
3
+ size 87929
quick_ppo_LunarLander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0076ee856b809a03659d8f5a6e77290a3f35368a51e98d8dc389982a55805c0a
3
+ size 43201
quick_ppo_LunarLander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
quick_ppo_LunarLander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (197 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 256.7887038591893, "std_reward": 22.4966737608877, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-23T18:50:49.225995"}