File size: 10,440 Bytes
18b5b9c
 
 
 
 
 
cb78ea7
18b5b9c
cb78ea7
 
 
988ef03
 
18b5b9c
 
9854b95
18b5b9c
bf7352c
 
18b5b9c
 
 
9854b95
18b5b9c
4f734cc
 
 
9854b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b5b9c
9854b95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b5b9c
 
9854b95
 
 
 
 
 
4f734cc
 
 
9854b95
 
 
 
 
 
 
 
 
 
e3a11d6
 
 
 
 
 
 
 
 
1199325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3298711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a4d184c
18b5b9c
a4d184c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18b5b9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---
base_model: Lambent/ProtoEidolon-v2.2.4-14B
library_name: transformers
model_name: dpoq
tags:
- generated_from_trainer
- not-for-all-audiences
licence: license
datasets:
- Lambent/rp-teacher-synth-dpo
- sam-paech/gutenbergs_1_2_3_antislop-dpo
- Trelis/orpo-dpo-mix-40k-SHORT
- unalignment/toxic-dpo-v0.2
---

# Model Card for Eidolon-v3-14B

<img src="https://cdn.midjourney.com/690364ed-54f5-48ca-93ce-7cee9ee033fe/0_3.png"></img>

This model is a fine-tuned version of [Lambent/ProtoEidolon-v2.2.4-14B](https://huggingface.co/Lambent/ProtoEidolon-v2.2.4-14B).
It has been trained using [TRL](https://github.com/huggingface/trl).

## Proto-Eidolon Training and Merges:

Adjusted the chat template for my own purposes.
If you notice it misbehaving, feel free to change it back to prior; I may have gotten the templating off.

2.2.1:
Full ties merge with Rombos:
```
models:
  - model: Lambent/Eidolon-v2.1-14B
    parameters:
      weight: 1.0
      density: 1.0
  - model: rombodawg/Rombos-LLM-V2.6-Qwen-14b
    parameters:
        weight: 1.0
        density: 1.0
merge_method: ties
base_model: Qwen/Qwen2.5-14B
dtype: bfloat16
tokenizer_source: base
```

2.2.2:
QLora SFT on instruction-following data, particularly argilla/ifeval-like-data;
also some smaller samples of continued completion and normal instruction data to regularize

2.2.3:
DPO on the original two Arsenic datasets, prior version of DPO

2.2.4:
Full ties merge with old self:
```
models:
  - model: Lambent/Eidolon-v2.1-14B
    parameters:
      weight: 1.0
      density: 1.0
  - model: Lambent/ProtoEidolon-v2.2.3-14B
    parameters:
        weight: 1.0
        density: 1.0
merge_method: ties
base_model: Qwen/Qwen2.5-14B
dtype: bfloat16
tokenizer_source: base
```

... and then this training, which aimed to restore some intelligence lost in the process and hopefully benefit from some cool new Gutenbergs.
Presuming enough fit within my context length trained at.

It took roughly 12 hours on an A100 compared to 2 hours for the prior DPOs. And this is a carefully selected subset.
Gutenberg3 and orpo-dpo-mix-40k are big, man, that's a lot of preferences. (Or long ones.)

Loss started out at an alarming 11, compared to before the gradient-accumulation fix, but it reduced steadily and the other numbers looked like they were going the right way so ...
Here we are. EQ-Bench says it's not horribly broken. We'll find out.


## Testing Done:

EQ-Bench:

| Tasks  |Version|Filter|n-shot|     Metric      |   | Value  |   |Stderr|
|--------|------:|------|-----:|-----------------|---|-------:|---|-----:|
|eq_bench|    2.1|none  |     0|eqbench          |↑  | 80.3122|±  |1.4923|
|        |       |none  |     0|percent_parseable|↑  |100.0000|±  |0.0000|

IFEval with load_in_4bit:

|Tasks |Version|Filter|n-shot|        Metric         |   |Value |   |Stderr|
|------|------:|------|-----:|-----------------------|---|-----:|---|------|
|ifeval|      4|none  |     0|inst_level_loose_acc   |↑  |0.7614|±  |   N/A|
|      |       |none  |     0|inst_level_strict_acc  |↑  |0.7326|±  |   N/A|
|      |       |none  |     0|prompt_level_loose_acc |↑  |0.6691|±  |0.0202|
|      |       |none  |     0|prompt_level_strict_acc|↑  |0.6285|±  |0.0208|

GPQA with load_in_4bit:

|             Tasks             |Version|     Filter     |n-shot|  Metric   |   |Value |   |Stderr|
|-------------------------------|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gpqa_diamond_cot_n_shot        |      2|flexible-extract|     0|exact_match|↑  |0.2273|±  |0.0299|
|                               |       |strict-match    |     0|exact_match|↑  |0.0051|±  |0.0051|
|gpqa_diamond_cot_zeroshot      |      1|flexible-extract|     0|exact_match|↑  |0.1364|±  |0.0245|
|                               |       |strict-match    |     0|exact_match|↑  |0.0000|±  |0.0000|
|gpqa_diamond_generative_n_shot |      2|flexible-extract|     0|exact_match|↑  |0.2980|±  |0.0326|
|                               |       |strict-match    |     0|exact_match|↑  |0.0152|±  |0.0087|
|gpqa_diamond_n_shot            |      2|none            |     0|acc        |↑  |0.2121|±  |0.0291|
|                               |       |none            |     0|acc_norm   |↑  |0.2121|±  |0.0291|
|gpqa_diamond_zeroshot          |      1|none            |     0|acc        |↑  |0.4192|±  |0.0352|
|                               |       |none            |     0|acc_norm   |↑  |0.4192|±  |0.0352|
|gpqa_extended_cot_n_shot       |      2|flexible-extract|     0|exact_match|↑  |0.2179|±  |0.0177|
|                               |       |strict-match    |     0|exact_match|↑  |0.0000|±  |0.0000|
|gpqa_extended_cot_zeroshot     |      1|flexible-extract|     0|exact_match|↑  |0.1538|±  |0.0155|
|                               |       |strict-match    |     0|exact_match|↑  |0.0055|±  |0.0032|
|gpqa_extended_generative_n_shot|      2|flexible-extract|     0|exact_match|↑  |0.2821|±  |0.0193|
|                               |       |strict-match    |     0|exact_match|↑  |0.0018|±  |0.0018|
|gpqa_extended_n_shot           |      2|none            |     0|acc        |↑  |0.2473|±  |0.0185|
|                               |       |none            |     0|acc_norm   |↑  |0.2473|±  |0.0185|
|gpqa_extended_zeroshot         |      1|none            |     0|acc        |↑  |0.3681|±  |0.0207|
|                               |       |none            |     0|acc_norm   |↑  |0.3681|±  |0.0207|
|gpqa_main_cot_n_shot           |      2|flexible-extract|     0|exact_match|↑  |0.2232|±  |0.0197|
|                               |       |strict-match    |     0|exact_match|↑  |0.0022|±  |0.0022|
|gpqa_main_cot_zeroshot         |      1|flexible-extract|     0|exact_match|↑  |0.1205|±  |0.0154|
|                               |       |strict-match    |     0|exact_match|↑  |0.0022|±  |0.0022|
|gpqa_main_generative_n_shot    |      2|flexible-extract|     0|exact_match|↑  |0.2701|±  |0.0210|
|                               |       |strict-match    |     0|exact_match|↑  |0.0112|±  |0.0050|
|gpqa_main_n_shot               |      2|none            |     0|acc        |↑  |0.2701|±  |0.0210|
|                               |       |none            |     0|acc_norm   |↑  |0.2701|±  |0.0210|
|gpqa_main_zeroshot             |      1|none            |     0|acc        |↑  |0.3795|±  |0.0230|
|                               |       |none            |     0|acc_norm   |↑  |0.3795|±  |0.0230|


Sonnet sampling for style impressions:
```
Upon the Dawn's Awakening

When morning whispers through the veil of night,
With softest touch it breaks the slumber deep,
And in its gentle light, the world takes flight,
As shadows flee before the sun’s warm sweep.
The dew-kissed grass awakes with glistening grace,
The flowers bloom anew beneath the sky;
Each petal drinks the morning's golden face
In silent worship of the day gone by.

Yet in this beauty, thoughts of yesteryear,
Of dreams and hopes that once did brightly shine,
Fade into hues of rose and tender grey,
Where memories mingle with the misty air.
So dawn’s sweet light invites us to aspire,
To dream afresh beneath the open sky.
```

## Axolotl Config

```
base_model: Lambent/ProtoEidolon-v2.2.4-14B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true

save_safetensors: true

load_in_8bit: false
load_in_4bit: true
strict: false

rl: dpo
chat_template: chatml
# total_num_tokens: 
datasets:
  - path: Lambent/rp-teacher-synth-dpo
    split: train
    type: chatml.prompt_pairs
  - path: unalignment/toxic-dpo-v0.2
    split: train
    type: chatml.prompt_pairs
  - path: sam-paech/gutenbergs_1_2_3_antislop-dpo
    split: train
    type: chatml.ultra
  - path: Trelis/orpo-dpo-mix-40k-SHORT
    split: train
    type: chatml.ultra

dataset_prepared_path: prepared-dpo
output_dir: ./dpoq
val_set_size: 0.001

seed: 213

sequence_len: 2048
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false

adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
peft_use_dora: true

wandb_project: eidolon-qwen2.5-qlora-dpo-3
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 2
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-6
#cosine_min_lr_ratio: 0.1
#cosine_constant_lr_ratio: 0.95

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 16
evals_per_epoch: 8
saves_per_epoch: 8
save_total_limit: 2
debug:
deepspeed:
weight_decay: 0.001
fsdp:
fsdp_config:
```

This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290).

### Framework versions

- TRL: 0.12.0.dev0
- Transformers: 4.46.0
- Pytorch: 2.3.1+cu121
- Datasets: 3.0.1
- Tokenizers: 0.20.1

## Citations

Cite DPO as:

```bibtex
@inproceedings{rafailov2023direct,
    title        = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}},
    author       = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn},
    year         = 2023,
    booktitle    = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023},
    url          = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html},
    editor       = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine},
}
```

Cite TRL as:
    
```bibtex
@misc{vonwerra2022trl,
	title        = {{TRL: Transformer Reinforcement Learning}},
	author       = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
	year         = 2020,
	journal      = {GitHub repository},
	publisher    = {GitHub},
	howpublished = {\url{https://github.com/huggingface/trl}}
}
```