--- license: cc library_name: peft tags: - generated_from_trainer base_model: Lambent/cosmoem-8x1B model-index: - name: cosmoe-lora-out results: [] datasets: - vicgalle/alpaca-gpt4 --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: Lambent/cosmoem-8x1B model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: vicgalle/alpaca-gpt4 type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.0 output_dir: ./cosmoe-lora-out unfrozen_parameters: model_config: output_router_logits: true adapter: lora lora_model_dir: lora_r: 64 lora_alpha: 16 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 16 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: wandb_project: CosMoEAlpacaLight-1b-v0.1 wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero2.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# cosmoe-lora-out This model is a fine-tuned version of [Lambent/cosmoem-8x1B](https://huggingface.co/Lambent/cosmoem-8x1B) on the vicgalle/alpaca-gpt4 dataset. ## Model description May have broken a bit in training. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results ### Framework versions - PEFT 0.8.2 - Transformers 4.39.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.17.1 - Tokenizers 0.15.0