Labib11 commited on
Commit
43d722d
·
verified ·
1 Parent(s): 08c0240

Delete README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -58
README.md DELETED
@@ -1,58 +0,0 @@
1
- ---
2
- library_name: sentence-transformers
3
- pipeline_tag: sentence-similarity
4
- tags:
5
- - sentence-transformers
6
- - feature-extraction
7
- - sentence-similarity
8
- - mteb
9
- ---
10
-
11
-
12
- # {MODEL_NAME}
13
-
14
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
-
16
- <!--- Describe your model here -->
17
-
18
- ## Usage (Sentence-Transformers)
19
-
20
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
21
-
22
- ```
23
- pip install -U sentence-transformers
24
- ```
25
-
26
- Then you can use the model like this:
27
-
28
- ```python
29
- from sentence_transformers import SentenceTransformer
30
- sentences = ["This is an example sentence", "Each sentence is converted"]
31
-
32
- model = SentenceTransformer('{MODEL_NAME}')
33
- embeddings = model.encode(sentences)
34
- print(embeddings)
35
- ```
36
-
37
-
38
-
39
- ## Evaluation Results
40
-
41
- <!--- Describe how your model was evaluated -->
42
-
43
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
44
-
45
-
46
-
47
- ## Full Model Architecture
48
- ```
49
- SentenceTransformer(
50
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
51
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
52
- (2): Normalize()
53
- )
54
- ```
55
-
56
- ## Citing & Authors
57
-
58
- <!--- Describe where people can find more information -->