LBK95 commited on
Commit
46bdc8c
·
verified ·
1 Parent(s): bf193d0

End of training

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/Llama-2-7b-hf
3
+ library_name: peft
4
+ license: llama2
5
+ tags:
6
+ - trl
7
+ - dpo
8
+ - generated_from_trainer
9
+ model-index:
10
+ - name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V3
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V3
18
+
19
+ This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.7312
22
+ - Rewards/chosen: -2.2500
23
+ - Rewards/rejected: -3.0688
24
+ - Rewards/accuracies: 0.6667
25
+ - Rewards/margins: 0.8189
26
+ - Logps/rejected: -156.0040
27
+ - Logps/chosen: -95.9953
28
+ - Logits/rejected: 0.0075
29
+ - Logits/chosen: 0.0375
30
+
31
+ ## Model description
32
+
33
+ More information needed
34
+
35
+ ## Intended uses & limitations
36
+
37
+ More information needed
38
+
39
+ ## Training and evaluation data
40
+
41
+ More information needed
42
+
43
+ ## Training procedure
44
+
45
+ ### Training hyperparameters
46
+
47
+ The following hyperparameters were used during training:
48
+ - learning_rate: 5e-05
49
+ - train_batch_size: 2
50
+ - eval_batch_size: 2
51
+ - seed: 42
52
+ - gradient_accumulation_steps: 2
53
+ - total_train_batch_size: 4
54
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
55
+ - lr_scheduler_type: cosine
56
+ - lr_scheduler_warmup_steps: 10
57
+ - num_epochs: 3
58
+
59
+ ### Training results
60
+
61
+ | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
62
+ |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
63
+ | 0.6606 | 0.3035 | 78 | 0.6743 | 0.0166 | -0.0081 | 0.75 | 0.0247 | -125.3963 | -73.3299 | 0.5935 | 0.6202 |
64
+ | 0.5493 | 0.6070 | 156 | 0.6634 | -0.1831 | -0.2415 | 0.6667 | 0.0585 | -127.7309 | -75.3266 | 0.5586 | 0.5847 |
65
+ | 0.5705 | 0.9105 | 234 | 0.5848 | -0.3315 | -0.6168 | 0.6667 | 0.2853 | -131.4834 | -76.8105 | 0.4949 | 0.5208 |
66
+ | 0.405 | 1.2140 | 312 | 0.5806 | -0.8206 | -1.3076 | 0.5833 | 0.4870 | -138.3913 | -81.7017 | 0.4210 | 0.4471 |
67
+ | 0.5029 | 1.5175 | 390 | 0.5738 | -1.0140 | -1.5365 | 0.6667 | 0.5225 | -140.6803 | -83.6359 | 0.3256 | 0.3525 |
68
+ | 0.1719 | 1.8210 | 468 | 0.6151 | -1.3642 | -1.9154 | 0.75 | 0.5512 | -144.4694 | -87.1375 | 0.1929 | 0.2203 |
69
+ | 0.3565 | 2.1245 | 546 | 0.6575 | -1.6573 | -2.3806 | 0.75 | 0.7233 | -149.1218 | -90.0692 | 0.1075 | 0.1363 |
70
+ | 0.4206 | 2.4280 | 624 | 0.7578 | -2.2884 | -3.1134 | 0.6667 | 0.8250 | -156.4492 | -96.3796 | 0.0126 | 0.0427 |
71
+ | 0.3123 | 2.7315 | 702 | 0.7312 | -2.2500 | -3.0688 | 0.6667 | 0.8189 | -156.0040 | -95.9953 | 0.0075 | 0.0375 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - PEFT 0.12.0
77
+ - Transformers 4.44.0
78
+ - Pytorch 2.4.0+cu121
79
+ - Datasets 3.0.2
80
+ - Tokenizers 0.19.1