End of training
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-2-7b-hf
|
3 |
+
library_name: peft
|
4 |
+
license: llama2
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- dpo
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V3
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-2-7b-hf-DPO-LookAhead-0_TTree1.4_TT0.9_TP0.7_TE0.2_V3
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.7312
|
22 |
+
- Rewards/chosen: -2.2500
|
23 |
+
- Rewards/rejected: -3.0688
|
24 |
+
- Rewards/accuracies: 0.6667
|
25 |
+
- Rewards/margins: 0.8189
|
26 |
+
- Logps/rejected: -156.0040
|
27 |
+
- Logps/chosen: -95.9953
|
28 |
+
- Logits/rejected: 0.0075
|
29 |
+
- Logits/chosen: 0.0375
|
30 |
+
|
31 |
+
## Model description
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Intended uses & limitations
|
36 |
+
|
37 |
+
More information needed
|
38 |
+
|
39 |
+
## Training and evaluation data
|
40 |
+
|
41 |
+
More information needed
|
42 |
+
|
43 |
+
## Training procedure
|
44 |
+
|
45 |
+
### Training hyperparameters
|
46 |
+
|
47 |
+
The following hyperparameters were used during training:
|
48 |
+
- learning_rate: 5e-05
|
49 |
+
- train_batch_size: 2
|
50 |
+
- eval_batch_size: 2
|
51 |
+
- seed: 42
|
52 |
+
- gradient_accumulation_steps: 2
|
53 |
+
- total_train_batch_size: 4
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: cosine
|
56 |
+
- lr_scheduler_warmup_steps: 10
|
57 |
+
- num_epochs: 3
|
58 |
+
|
59 |
+
### Training results
|
60 |
+
|
61 |
+
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|
62 |
+
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
|
63 |
+
| 0.6606 | 0.3035 | 78 | 0.6743 | 0.0166 | -0.0081 | 0.75 | 0.0247 | -125.3963 | -73.3299 | 0.5935 | 0.6202 |
|
64 |
+
| 0.5493 | 0.6070 | 156 | 0.6634 | -0.1831 | -0.2415 | 0.6667 | 0.0585 | -127.7309 | -75.3266 | 0.5586 | 0.5847 |
|
65 |
+
| 0.5705 | 0.9105 | 234 | 0.5848 | -0.3315 | -0.6168 | 0.6667 | 0.2853 | -131.4834 | -76.8105 | 0.4949 | 0.5208 |
|
66 |
+
| 0.405 | 1.2140 | 312 | 0.5806 | -0.8206 | -1.3076 | 0.5833 | 0.4870 | -138.3913 | -81.7017 | 0.4210 | 0.4471 |
|
67 |
+
| 0.5029 | 1.5175 | 390 | 0.5738 | -1.0140 | -1.5365 | 0.6667 | 0.5225 | -140.6803 | -83.6359 | 0.3256 | 0.3525 |
|
68 |
+
| 0.1719 | 1.8210 | 468 | 0.6151 | -1.3642 | -1.9154 | 0.75 | 0.5512 | -144.4694 | -87.1375 | 0.1929 | 0.2203 |
|
69 |
+
| 0.3565 | 2.1245 | 546 | 0.6575 | -1.6573 | -2.3806 | 0.75 | 0.7233 | -149.1218 | -90.0692 | 0.1075 | 0.1363 |
|
70 |
+
| 0.4206 | 2.4280 | 624 | 0.7578 | -2.2884 | -3.1134 | 0.6667 | 0.8250 | -156.4492 | -96.3796 | 0.0126 | 0.0427 |
|
71 |
+
| 0.3123 | 2.7315 | 702 | 0.7312 | -2.2500 | -3.0688 | 0.6667 | 0.8189 | -156.0040 | -95.9953 | 0.0075 | 0.0375 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- PEFT 0.12.0
|
77 |
+
- Transformers 4.44.0
|
78 |
+
- Pytorch 2.4.0+cu121
|
79 |
+
- Datasets 3.0.2
|
80 |
+
- Tokenizers 0.19.1
|