--- license: apache-2.0 base_model: google/vit-large-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - recall - f1 - precision model-index: - name: vit-large-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8420604512558536 - name: Recall type: recall value: 0.8420604512558536 - name: F1 type: f1 value: 0.840458775689156 - name: Precision type: precision value: 0.8450034699086092 --- # vit-large-patch16-224-finetuned-ind-17-imbalanced-aadhaarmask This model is a fine-tuned version of [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.3294 - Accuracy: 0.8421 - Recall: 0.8421 - F1: 0.8405 - Precision: 0.8450 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | F1 | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.5269 | 0.9974 | 293 | 0.5393 | 0.8029 | 0.8029 | 0.7943 | 0.7941 | | 0.4275 | 1.9983 | 587 | 0.4630 | 0.8182 | 0.8182 | 0.8103 | 0.8255 | | 0.4681 | 2.9991 | 881 | 0.4346 | 0.8408 | 0.8408 | 0.8358 | 0.8557 | | 0.3721 | 4.0 | 1175 | 0.3631 | 0.8450 | 0.8450 | 0.8417 | 0.8541 | | 0.4054 | 4.9974 | 1468 | 0.3536 | 0.8455 | 0.8455 | 0.8445 | 0.8491 | | 0.2519 | 5.9983 | 1762 | 0.3747 | 0.8421 | 0.8421 | 0.8391 | 0.8549 | | 0.2923 | 6.9991 | 2056 | 0.3664 | 0.8395 | 0.8395 | 0.8402 | 0.8467 | | 0.2288 | 8.0 | 2350 | 0.3496 | 0.8382 | 0.8382 | 0.8377 | 0.8442 | | 0.1642 | 8.9974 | 2643 | 0.3455 | 0.8463 | 0.8463 | 0.8444 | 0.8468 | | 0.1783 | 9.9745 | 2930 | 0.3468 | 0.8476 | 0.8476 | 0.8463 | 0.8490 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1