--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: CS221-roberta-large-finetuned-semeval-aug results: [] --- # CS221-roberta-large-finetuned-semeval-aug This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2306 - F1: 0.8689 - Roc Auc: 0.8985 - Accuracy: 0.6856 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.4139 | 1.0 | 139 | 0.3932 | 0.7018 | 0.7800 | 0.3902 | | 0.3507 | 2.0 | 278 | 0.3303 | 0.7826 | 0.8432 | 0.5077 | | 0.2475 | 3.0 | 417 | 0.2855 | 0.8098 | 0.8553 | 0.5727 | | 0.164 | 4.0 | 556 | 0.2550 | 0.8416 | 0.8800 | 0.6350 | | 0.0943 | 5.0 | 695 | 0.2306 | 0.8689 | 0.8985 | 0.6856 | | 0.0774 | 6.0 | 834 | 0.2709 | 0.8624 | 0.8932 | 0.6829 | | 0.0467 | 7.0 | 973 | 0.2766 | 0.8675 | 0.9049 | 0.6757 | | 0.0274 | 8.0 | 1112 | 0.2610 | 0.8797 | 0.9089 | 0.7182 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0