--- tags: - merge - mergekit - lazymergekit - mistralai/Mistral-7B-v0.1 - Kukedlc/neuronal-7b-Mlab - mlabonne/Monarch-7B base_model: - mistralai/Mistral-7B-v0.1 - Kukedlc/neuronal-7b-Mlab - mlabonne/Monarch-7B --- # Trinity-7b Trinity-7b is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) * [Kukedlc/neuronal-7b-Mlab](https://huggingface.co/Kukedlc/neuronal-7b-Mlab) * [mlabonne/Monarch-7B](https://huggingface.co/mlabonne/Monarch-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 parameters: density: [1, 0.7, 0.1] # density gradient weight: 1.0 - model: Kukedlc/neuronal-7b-Mlab parameters: density: 0.5 weight: [0, 0.3, 0.7, 1] # weight gradient - model: mlabonne/Monarch-7B parameters: density: 0.33 weight: - filter: mlp value: 0.5 - value: 0 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true int8_mask: true dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Kukedlc/Trinity-7b" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```