File size: 1,658 Bytes
4b6ba2d
 
 
 
 
 
 
 
 
750f3fc
96e0f2b
1e51901
 
4b6ba2d
 
 
18bb6c7
4b6ba2d
 
 
 
 
 
7fc4c2e
4b6ba2d
 
 
 
 
 
 
 
 
750f3fc
 
 
 
483ff89
750f3fc
 
7e89163
 
a93fa44
7e89163
0887012
 
7fc4c2e
0887012
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
language:
- "lzh"
tags:
- "classical chinese"
- "literary chinese"
- "ancient chinese"
- "token-classification"
- "pos"
- "dependency-parsing"
base_model: KoichiYasuoka/roberta-classical-chinese-base-char
datasets:
- "universal_dependencies"
license: "apache-2.0"
pipeline_tag: "token-classification"
widget:
- text: "子曰學而時習之不亦説乎有朋自遠方來不亦樂乎人不知而不慍不亦君子乎"
---

# roberta-classical-chinese-base-upos

## Model Description

This is a RoBERTa model pre-trained on Classical Chinese texts for POS-tagging and dependency-parsing, derived from [roberta-classical-chinese-base-char](https://huggingface.co/KoichiYasuoka/roberta-classical-chinese-base-char). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech) and [FEATS](https://universaldependencies.org/u/feat/).

## How to Use

```py
from transformers import AutoTokenizer,AutoModelForTokenClassification
tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos")
model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/roberta-classical-chinese-base-upos")
```

or

```py
import esupar
nlp=esupar.load("KoichiYasuoka/roberta-classical-chinese-base-upos")
```

## Reference

Koichi Yasuoka: [Universal Dependencies Treebank of the Four Books in Classical Chinese](http://hdl.handle.net/2433/245217), DADH2019: 10th International Conference of Digital Archives and Digital Humanities (December 2019), pp.20-28.

## See Also

[esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models