KoichiYasuoka commited on
Commit
b0801ed
·
1 Parent(s): 9b97257

algorithm improved

Browse files
Files changed (1) hide show
  1. ud.py +31 -12
ud.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from transformers import TokenClassificationPipeline
2
 
3
  class UniversalDependenciesPipeline(TokenClassificationPipeline):
@@ -7,24 +8,25 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
7
  with torch.no_grad():
8
  e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
9
  return {"logits":e.logits[:,1:-2,:],**model_inputs}
 
 
10
  def postprocess(self,model_outputs,**kwargs):
11
- import numpy
12
  if "logits" not in model_outputs:
13
  return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
14
  e=model_outputs["logits"].numpy()
15
  r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
16
- e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,numpy.nan)
17
  g=self.model.config.label2id["X|_|goeswith"]
18
  r=numpy.tri(e.shape[0])
19
  for i in range(e.shape[0]):
20
  for j in range(i+2,e.shape[1]):
21
- r[i,j]=r[i,j-1] if numpy.nanargmax(e[i,j-1])==g else 1
22
- e[:,:,g]+=numpy.where(r==0,0,numpy.nan)
23
- m,p=numpy.nanmax(e,axis=2),numpy.nanargmax(e,axis=2)
24
  h=self.chu_liu_edmonds(m)
25
  z=[i for i,j in enumerate(h) if i==j]
26
  if len(z)>1:
27
- k,h=z[numpy.nanargmax(m[z,z])],numpy.nanmin(m)-numpy.nanmax(m)
28
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
29
  h=self.chu_liu_edmonds(m)
30
  v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
@@ -35,14 +37,31 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
35
  h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
36
  v[i-1]=(v[i-1][0],v.pop(i)[1])
37
  q.pop(i)
 
 
 
 
38
  t=model_outputs["sentence"].replace("\n"," ")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  u="# text = "+t+"\n"
40
  for i,(s,e) in enumerate(v):
41
  u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
42
  return u+"\n"
43
  def chu_liu_edmonds(self,matrix):
44
- import numpy
45
- h=numpy.nanargmax(matrix,axis=0)
46
  x=[-1 if i==j else j for i,j in enumerate(h)]
47
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
48
  y=[]
@@ -53,10 +72,10 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
53
  if max(x)<0:
54
  return h
55
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
56
- z=matrix-numpy.nanmax(matrix,axis=0)
57
- m=numpy.block([[z[x,:][:,x],numpy.nanmax(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.nanmax(z[y,:][:,x],axis=0),numpy.nanmax(z[y,y])]])
58
- k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.nanargmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
59
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
60
- i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
61
  h[i]=x[k[-1]] if k[-1]<len(x) else i
62
  return h
 
1
+ import numpy
2
  from transformers import TokenClassificationPipeline
3
 
4
  class UniversalDependenciesPipeline(TokenClassificationPipeline):
 
8
  with torch.no_grad():
9
  e=self.model(input_ids=torch.tensor([v[0:i]+[self.tokenizer.mask_token_id]+v[i+1:]+[j] for i,j in enumerate(v[1:-1],1)],device=self.device))
10
  return {"logits":e.logits[:,1:-2,:],**model_inputs}
11
+ def check_model_type(self,supported_models):
12
+ pass
13
  def postprocess(self,model_outputs,**kwargs):
 
14
  if "logits" not in model_outputs:
15
  return "".join(self.postprocess(x,**kwargs) for x in model_outputs)
16
  e=model_outputs["logits"].numpy()
17
  r=[1 if i==0 else -1 if j.endswith("|root") else 0 for i,j in sorted(self.model.config.id2label.items())]
18
+ e+=numpy.where(numpy.add.outer(numpy.identity(e.shape[0]),r)==0,0,-numpy.inf)
19
  g=self.model.config.label2id["X|_|goeswith"]
20
  r=numpy.tri(e.shape[0])
21
  for i in range(e.shape[0]):
22
  for j in range(i+2,e.shape[1]):
23
+ r[i,j]=r[i,j-1] if numpy.argmax(e[i,j-1])==g else 1
24
+ e[:,:,g]+=numpy.where(r==0,0,-numpy.inf)
25
+ m,p=numpy.max(e,axis=2),numpy.argmax(e,axis=2)
26
  h=self.chu_liu_edmonds(m)
27
  z=[i for i,j in enumerate(h) if i==j]
28
  if len(z)>1:
29
+ k,h=z[numpy.argmax(m[z,z])],numpy.min(m)-numpy.max(m)
30
  m[:,z]+=[[0 if j in z and (i!=j or i==k) else h for i in z] for j in range(m.shape[0])]
31
  h=self.chu_liu_edmonds(m)
32
  v=[(s,e) for s,e in model_outputs["offset_mapping"][0].tolist() if s<e]
 
37
  h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
38
  v[i-1]=(v[i-1][0],v.pop(i)[1])
39
  q.pop(i)
40
+ elif v[i-1][1]>v[i][0]:
41
+ h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
42
+ v[i-1]=(v[i-1][0],v.pop(i)[1])
43
+ q.pop(i)
44
  t=model_outputs["sentence"].replace("\n"," ")
45
+ for i,(s,e) in reversed(list(enumerate(v))):
46
+ w=t[s:e]
47
+ if w.startswith(" "):
48
+ j=len(w)-len(w.lstrip())
49
+ w=w.lstrip()
50
+ v[i]=(v[i][0]+j,v[i][1])
51
+ if w.endswith(" "):
52
+ j=len(w)-len(w.rstrip())
53
+ w=w.rstrip()
54
+ v[i]=(v[i][0],v[i][1]-j)
55
+ if w.strip()=="":
56
+ h=[b if i>b else b-1 for a,b in enumerate(h) if i!=a]
57
+ v.pop(i)
58
+ q.pop(i)
59
  u="# text = "+t+"\n"
60
  for i,(s,e) in enumerate(v):
61
  u+="\t".join([str(i+1),t[s:e],"_",q[i][0],"_","|".join(q[i][1:-1]),str(0 if h[i]==i else h[i]+1),q[i][-1],"_","_" if i+1<len(v) and e<v[i+1][0] else "SpaceAfter=No"])+"\n"
62
  return u+"\n"
63
  def chu_liu_edmonds(self,matrix):
64
+ h=numpy.argmax(matrix,axis=0)
 
65
  x=[-1 if i==j else j for i,j in enumerate(h)]
66
  for b in [lambda x,i,j:-1 if i not in x else x[i],lambda x,i,j:-1 if j<0 else x[j]]:
67
  y=[]
 
72
  if max(x)<0:
73
  return h
74
  y,x=[i for i,j in enumerate(x) if j==max(x)],[i for i,j in enumerate(x) if j<max(x)]
75
+ z=matrix-numpy.max(matrix,axis=0)
76
+ m=numpy.block([[z[x,:][:,x],numpy.max(z[x,:][:,y],axis=1).reshape(len(x),1)],[numpy.max(z[y,:][:,x],axis=0),numpy.max(z[y,y])]])
77
+ k=[j if i==len(x) else x[j] if j<len(x) else y[numpy.argmax(z[y,x[i]])] for i,j in enumerate(self.chu_liu_edmonds(m))]
78
  h=[j if i in y else k[x.index(i)] for i,j in enumerate(h)]
79
+ i=y[numpy.argmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
80
  h[i]=x[k[-1]] if k[-1]<len(x) else i
81
  return h