KoichiYasuoka
commited on
Commit
·
35645d0
1
Parent(s):
c6f55b9
juman separated
Browse files- juman.py +49 -0
- tokenizer_config.json +1 -1
- ud.py +1 -48
juman.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from transformers import DebertaV2TokenizerFast
|
3 |
+
from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
|
4 |
+
try:
|
5 |
+
from transformers.utils import cached_file
|
6 |
+
except:
|
7 |
+
from transformers.file_utils import cached_path,hf_bucket_url
|
8 |
+
cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
|
9 |
+
|
10 |
+
class MecabPreTokenizer(MecabTokenizer):
|
11 |
+
def mecab_split(self,i,normalized_string):
|
12 |
+
t=str(normalized_string)
|
13 |
+
z=[]
|
14 |
+
e=0
|
15 |
+
for c in self.tokenize(t):
|
16 |
+
s=t.find(c,e)
|
17 |
+
e=e if s<0 else s+len(c)
|
18 |
+
z.append((0,0) if s<0 else (s,e))
|
19 |
+
return [normalized_string[s:e] for s,e in z if e>0]
|
20 |
+
def pre_tokenize(self,pretok):
|
21 |
+
pretok.split(self.mecab_split)
|
22 |
+
|
23 |
+
class JumanDebertaV2TokenizerFast(DebertaV2TokenizerFast):
|
24 |
+
def __init__(self,**kwargs):
|
25 |
+
from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence
|
26 |
+
super().__init__(**kwargs)
|
27 |
+
d,r="/var/lib/mecab/dic/juman-utf8","/etc/mecabrc"
|
28 |
+
if not (os.path.isdir(d) and os.path.isfile(r)):
|
29 |
+
import zipfile
|
30 |
+
import tempfile
|
31 |
+
self.dicdir=tempfile.TemporaryDirectory()
|
32 |
+
d=self.dicdir.name
|
33 |
+
with zipfile.ZipFile(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip")) as z:
|
34 |
+
z.extractall(d)
|
35 |
+
r=os.path.join(d,"mecabrc")
|
36 |
+
with open(r,"w",encoding="utf-8") as w:
|
37 |
+
print("dicdir =",d,file=w)
|
38 |
+
self.custom_pre_tokenizer=Sequence([PreTokenizer.custom(MecabPreTokenizer(mecab_dic=None,mecab_option="-d "+d+" -r "+r)),Metaspace()])
|
39 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
40 |
+
def save_pretrained(self,save_directory,**kwargs):
|
41 |
+
import shutil
|
42 |
+
from tokenizers.pre_tokenizers import Metaspace
|
43 |
+
self._auto_map={"AutoTokenizer":[None,"juman.JumanDebertaV2TokenizerFast"]}
|
44 |
+
self._tokenizer.pre_tokenizer=Metaspace()
|
45 |
+
super().save_pretrained(save_directory,**kwargs)
|
46 |
+
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
47 |
+
shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"juman.py"))
|
48 |
+
shutil.copy(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip"),os.path.join(save_directory,"mecab-jumandic-utf8.zip"))
|
49 |
+
|
tokenizer_config.json
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
"auto_map": {"AutoTokenizer":[null,"
|
3 |
"bos_token": "[CLS]",
|
4 |
"cls_token": "[CLS]",
|
5 |
"do_lower_case": false,
|
|
|
1 |
{
|
2 |
+
"auto_map": {"AutoTokenizer":[null,"juman.JumanDebertaV2TokenizerFast"]},
|
3 |
"bos_token": "[CLS]",
|
4 |
"cls_token": "[CLS]",
|
5 |
"do_lower_case": false,
|
ud.py
CHANGED
@@ -1,11 +1,4 @@
|
|
1 |
-
import
|
2 |
-
from transformers import TokenClassificationPipeline,DebertaV2TokenizerFast
|
3 |
-
from transformers.models.bert_japanese.tokenization_bert_japanese import MecabTokenizer
|
4 |
-
try:
|
5 |
-
from transformers.utils import cached_file
|
6 |
-
except:
|
7 |
-
from transformers.file_utils import cached_path,hf_bucket_url
|
8 |
-
cached_file=lambda x,y:os.path.join(x,y) if os.path.isdir(x) else cached_path(hf_bucket_url(x,y))
|
9 |
|
10 |
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
11 |
def _forward(self,model_inputs):
|
@@ -67,43 +60,3 @@ class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
|
67 |
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
68 |
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
69 |
return h
|
70 |
-
|
71 |
-
class MecabPreTokenizer(MecabTokenizer):
|
72 |
-
def mecab_split(self,i,normalized_string):
|
73 |
-
t=str(normalized_string)
|
74 |
-
z=[]
|
75 |
-
e=0
|
76 |
-
for c in self.tokenize(t):
|
77 |
-
s=t.find(c,e)
|
78 |
-
e=e if s<0 else s+len(c)
|
79 |
-
z.append((0,0) if s<0 else (s,e))
|
80 |
-
return [normalized_string[s:e] for s,e in z if e>0]
|
81 |
-
def pre_tokenize(self,pretok):
|
82 |
-
pretok.split(self.mecab_split)
|
83 |
-
|
84 |
-
class JumanDebertaV2TokenizerFast(DebertaV2TokenizerFast):
|
85 |
-
def __init__(self,**kwargs):
|
86 |
-
from tokenizers.pre_tokenizers import PreTokenizer,Metaspace,Sequence
|
87 |
-
super().__init__(**kwargs)
|
88 |
-
d,r="/var/lib/mecab/dic/juman-utf8","/etc/mecabrc"
|
89 |
-
if not (os.path.isdir(d) and os.path.isfile(r)):
|
90 |
-
import zipfile
|
91 |
-
import tempfile
|
92 |
-
self.dicdir=tempfile.TemporaryDirectory()
|
93 |
-
d=self.dicdir.name
|
94 |
-
with zipfile.ZipFile(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip")) as z:
|
95 |
-
z.extractall(d)
|
96 |
-
r=os.path.join(d,"mecabrc")
|
97 |
-
with open(r,"w",encoding="utf-8") as w:
|
98 |
-
print("dicdir =",d,file=w)
|
99 |
-
self.custom_pre_tokenizer=Sequence([PreTokenizer.custom(MecabPreTokenizer(mecab_dic=None,mecab_option="-d "+d+" -r "+r)),Metaspace()])
|
100 |
-
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
101 |
-
def save_pretrained(self,save_directory,**kwargs):
|
102 |
-
import shutil
|
103 |
-
from tokenizers.pre_tokenizers import Metaspace
|
104 |
-
self._auto_map={"AutoTokenizer":[None,"ud.JumanDebertaV2TokenizerFast"]}
|
105 |
-
self._tokenizer.pre_tokenizer=Metaspace()
|
106 |
-
super().save_pretrained(save_directory,**kwargs)
|
107 |
-
self._tokenizer.pre_tokenizer=self.custom_pre_tokenizer
|
108 |
-
shutil.copy(os.path.abspath(__file__),os.path.join(save_directory,"ud.py"))
|
109 |
-
shutil.copy(cached_file(self.name_or_path,"mecab-jumandic-utf8.zip"),os.path.join(save_directory,"mecab-jumandic-utf8.zip"))
|
|
|
1 |
+
from transformers import TokenClassificationPipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
class UniversalDependenciesPipeline(TokenClassificationPipeline):
|
4 |
def _forward(self,model_inputs):
|
|
|
60 |
i=y[numpy.nanargmax(z[x[k[-1]],y] if k[-1]<len(x) else z[y,y])]
|
61 |
h[i]=x[k[-1]] if k[-1]<len(x) else i
|
62 |
return h
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|