#! /usr/bin/python3 src="KoichiYasuoka/deberta-base-chinese-upos" tgt="KoichiYasuoka/deberta-base-chinese-ud-goeswith" import os for d in ["UD_Chinese-GSD","UD_Chinese-GSDSimp"]: os.system("test -d "+d+" || git clone --depth=1 https://github.com/UniversalDependencies/"+d) os.system("for F in train dev test ; do cat UD_Chinese-*/*-$F.conllu > $F.conllu ; done") class UDgoeswithDataset(object): def __init__(self,conllu,tokenizer): self.ids,self.tags,label=[],[],set() with open(conllu,"r",encoding="utf-8") as r: cls,sep,msk=tokenizer.cls_token_id,tokenizer.sep_token_id,tokenizer.mask_token_id dep,c="-|_|dep",[] for s in r: t=s.split("\t") if len(t)==10 and t[0].isdecimal(): c.append(t) elif c!=[]: v=tokenizer([t[1] for t in c],add_special_tokens=False)["input_ids"] for i in range(len(v)-1,-1,-1): for j in range(1,len(v[i])): c.insert(i+1,[c[i][0],"_","_","X","_","_",c[i][0],"goeswith","_","_"]) y=["0"]+[t[0] for t in c] h=[i if t[6]=="0" else y.index(t[6]) for i,t in enumerate(c,1)] p,v=[t[3]+"|"+t[5]+"|"+t[7] for t in c],sum(v,[]) self.ids.append([cls]+v+[sep]) self.tags.append([dep]+p+[dep]) label=set(sum([self.tags[-1],list(label)],[])) for i,k in enumerate(v): self.ids.append([cls]+v[0:i]+[msk]+v[i+1:]+[sep,k]) self.tags.append([dep]+[t if h[j]==i+1 else dep for j,t in enumerate(p)]+[dep,dep]) c=[] self.label2id={l:i for i,l in enumerate(sorted(label))} def __call__(*args): label=set(sum([list(t.label2id) for t in args],[])) lid={l:i for i,l in enumerate(sorted(label))} for t in args: t.label2id=lid return lid __len__=lambda self:len(self.ids) __getitem__=lambda self,i:{"input_ids":self.ids[i],"labels":[self.label2id[t] for t in self.tags[i]]} from transformers import BertTokenizer,AutoConfig,AutoModelForTokenClassification,DataCollatorForTokenClassification,TrainingArguments,Trainer tkz=BertTokenizer.from_pretrained(src,model_max_length=512) trainDS=UDgoeswithDataset("train.conllu",tkz) devDS=UDgoeswithDataset("dev.conllu",tkz) testDS=UDgoeswithDataset("test.conllu",tkz) lid=trainDS(devDS,testDS) cfg=AutoConfig.from_pretrained(src,num_labels=len(lid),label2id=lid,id2label={i:l for l,i in lid.items()},ignore_mismatched_sizes=True) arg=TrainingArguments(num_train_epochs=3,per_device_train_batch_size=32,output_dir="/tmp",overwrite_output_dir=True,save_total_limit=2,evaluation_strategy="epoch",learning_rate=5e-05,warmup_ratio=0.1) trn=Trainer(args=arg,data_collator=DataCollatorForTokenClassification(tkz),model=AutoModelForTokenClassification.from_pretrained(src,config=cfg,ignore_mismatched_sizes=True),train_dataset=trainDS,eval_dataset=devDS) trn.train() trn.save_model(tgt) tkz.save_pretrained(tgt)