KoichiYasuoka commited on
Commit
f30c523
Β·
1 Parent(s): 149c3d0

initial release

Browse files
Files changed (6) hide show
  1. README.md +26 -0
  2. config.json +128 -0
  3. pytorch_model.bin +3 -0
  4. special_tokens_map.json +1 -0
  5. tokenizer_config.json +1 -0
  6. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - "zh"
4
+ tags:
5
+ - "chinese"
6
+ - "token-classification"
7
+ - "pos"
8
+ - "wikipedia"
9
+ license: "apache-2.0"
10
+ pipeline_tag: "token-classification"
11
+ ---
12
+
13
+ # chinese-roberta-large-upos
14
+
15
+ ## Model Description
16
+
17
+ This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging, derived from [chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech).
18
+
19
+ ## How to Use
20
+
21
+ ```py
22
+ from transformers import AutoTokenizer,AutoModelForTokenClassification
23
+ tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos")
24
+ model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-large-upos")
25
+ ```
26
+
config.json ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "directionality": "bidi",
8
+ "eos_token_id": 2,
9
+ "finetuning_task": "ner",
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 1024,
14
+ "id2label": {
15
+ "0": "ADJ",
16
+ "1": "ADP",
17
+ "2": "ADV",
18
+ "3": "AUX",
19
+ "4": "B-ADJ",
20
+ "5": "B-ADP",
21
+ "6": "B-ADV",
22
+ "7": "B-AUX",
23
+ "8": "B-CCONJ",
24
+ "9": "B-DET",
25
+ "10": "B-NOUN",
26
+ "11": "B-NUM",
27
+ "12": "B-PART",
28
+ "13": "B-PRON",
29
+ "14": "B-PROPN",
30
+ "15": "B-PUNCT",
31
+ "16": "B-SYM",
32
+ "17": "B-VERB",
33
+ "18": "B-X",
34
+ "19": "CCONJ",
35
+ "20": "DET",
36
+ "21": "I-ADJ",
37
+ "22": "I-ADP",
38
+ "23": "I-ADV",
39
+ "24": "I-AUX",
40
+ "25": "I-CCONJ",
41
+ "26": "I-DET",
42
+ "27": "I-NOUN",
43
+ "28": "I-NUM",
44
+ "29": "I-PART",
45
+ "30": "I-PRON",
46
+ "31": "I-PROPN",
47
+ "32": "I-PUNCT",
48
+ "33": "I-SYM",
49
+ "34": "I-VERB",
50
+ "35": "I-X",
51
+ "36": "NOUN",
52
+ "37": "NUM",
53
+ "38": "PART",
54
+ "39": "PRON",
55
+ "40": "PROPN",
56
+ "41": "PUNCT",
57
+ "42": "SYM",
58
+ "43": "VERB",
59
+ "44": "X"
60
+ },
61
+ "initializer_range": 0.02,
62
+ "intermediate_size": 4096,
63
+ "label2id": {
64
+ "ADJ": 0,
65
+ "ADP": 1,
66
+ "ADV": 2,
67
+ "AUX": 3,
68
+ "B-ADJ": 4,
69
+ "B-ADP": 5,
70
+ "B-ADV": 6,
71
+ "B-AUX": 7,
72
+ "B-CCONJ": 8,
73
+ "B-DET": 9,
74
+ "B-NOUN": 10,
75
+ "B-NUM": 11,
76
+ "B-PART": 12,
77
+ "B-PRON": 13,
78
+ "B-PROPN": 14,
79
+ "B-PUNCT": 15,
80
+ "B-SYM": 16,
81
+ "B-VERB": 17,
82
+ "B-X": 18,
83
+ "CCONJ": 19,
84
+ "DET": 20,
85
+ "I-ADJ": 21,
86
+ "I-ADP": 22,
87
+ "I-ADV": 23,
88
+ "I-AUX": 24,
89
+ "I-CCONJ": 25,
90
+ "I-DET": 26,
91
+ "I-NOUN": 27,
92
+ "I-NUM": 28,
93
+ "I-PART": 29,
94
+ "I-PRON": 30,
95
+ "I-PROPN": 31,
96
+ "I-PUNCT": 32,
97
+ "I-SYM": 33,
98
+ "I-VERB": 34,
99
+ "I-X": 35,
100
+ "NOUN": 36,
101
+ "NUM": 37,
102
+ "PART": 38,
103
+ "PRON": 39,
104
+ "PROPN": 40,
105
+ "PUNCT": 41,
106
+ "SYM": 42,
107
+ "VERB": 43,
108
+ "X": 44
109
+ },
110
+ "layer_norm_eps": 1e-12,
111
+ "max_position_embeddings": 512,
112
+ "model_type": "bert",
113
+ "num_attention_heads": 16,
114
+ "num_hidden_layers": 24,
115
+ "output_past": true,
116
+ "pad_token_id": 1,
117
+ "pooler_fc_size": 768,
118
+ "pooler_num_attention_heads": 12,
119
+ "pooler_num_fc_layers": 3,
120
+ "pooler_size_per_head": 128,
121
+ "pooler_type": "first_token_transform",
122
+ "position_embedding_type": "absolute",
123
+ "torch_dtype": "float32",
124
+ "transformers_version": "4.9.2",
125
+ "type_vocab_size": 2,
126
+ "use_cache": true,
127
+ "vocab_size": 21128
128
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f040a4aa16f618a52787f20459e476a4aaebd981ade4bb04db77db2adb241f5
3
+ size 1298231217
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "tokenizer_class": "BertTokenizer"}
vocab.txt ADDED
The diff for this file is too large to render. See raw diff