--- language: - "zh" tags: - "chinese" - "token-classification" - "pos" - "wikipedia" - "dependency-parsing" base_model: hfl/chinese-roberta-wwm-ext datasets: - "universal_dependencies" license: "apache-2.0" pipeline_tag: "token-classification" --- # chinese-roberta-base-upos ## Model Description This is a BERT model pre-trained on Chinese Wikipedia texts (both simplified and traditional) for POS-tagging and dependency-parsing, derived from [chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext). Every word is tagged by [UPOS](https://universaldependencies.org/u/pos/) (Universal Part-Of-Speech). ## How to Use ```py from transformers import AutoTokenizer,AutoModelForTokenClassification tokenizer=AutoTokenizer.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos") model=AutoModelForTokenClassification.from_pretrained("KoichiYasuoka/chinese-roberta-base-upos") ``` or ```py import esupar nlp=esupar.load("KoichiYasuoka/chinese-roberta-base-upos") ``` ## See Also [esupar](https://github.com/KoichiYasuoka/esupar): Tokenizer POS-tagger and Dependency-parser with BERT/RoBERTa/DeBERTa models