--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4487 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.74 | 1.0 | 112 | 0.6136 | 0.81 | | 0.6137 | 2.0 | 225 | 0.7364 | 0.76 | | 0.5996 | 3.0 | 337 | 0.5322 | 0.88 | | 0.516 | 4.0 | 450 | 0.9805 | 0.73 | | 0.4013 | 5.0 | 562 | 0.5349 | 0.86 | | 0.1779 | 6.0 | 675 | 0.6328 | 0.82 | | 0.1356 | 7.0 | 787 | 0.5007 | 0.85 | | 0.1938 | 8.0 | 900 | 0.5199 | 0.86 | | 0.3675 | 9.0 | 1012 | 0.4209 | 0.9 | | 0.1299 | 9.96 | 1120 | 0.4487 | 0.88 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.0