KnutJaegersberg commited on
Commit
60e43e9
·
verified ·
1 Parent(s): 6ebb857

Delete README (4).md

Browse files
Files changed (1) hide show
  1. README (4).md +0 -195
README (4).md DELETED
@@ -1,195 +0,0 @@
1
- ---
2
- license: llama3.1
3
- language:
4
- - en
5
- pipeline_tag: text-generation
6
- datasets:
7
- - allenai/RLVR-GSM-MATH-IF-Mixed-Constraints
8
- base_model:
9
- - allenai/Llama-3.1-Tulu-3-70B-DPO
10
- library_name: transformers
11
- ---
12
-
13
- <img src="https://huggingface.co/datasets/allenai/blog-images/resolve/main/tulu3/Tulu3-logo.png" alt="Tulu 3 banner" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
14
-
15
- # Llama-3.1-Tulu-3-70B
16
-
17
- Tülu3 is a leading instruction following model family, offering fully open-source data, code, and recipes designed to serve as a comprehensive guide for modern post-training techniques.
18
- Tülu3 is designed for state-of-the-art performance on a diversity of tasks in addition to chat, such as MATH, GSM8K, and IFEval.
19
-
20
- ## Model description
21
-
22
- - **Model type:** A model trained on a mix of publicly available, synthetic and human-created datasets.
23
- - **Language(s) (NLP):** Primarily English
24
- - **License:** Llama 3.1 Community License Agreement
25
- - **Finetuned from model:** allenai/Llama-3.1-Tulu-3-70B-DPO
26
-
27
- ### Model Sources
28
-
29
- - **Training Repository:** https://github.com/allenai/open-instruct
30
- - **Eval Repository:** https://github.com/allenai/olmes
31
- - **Paper:** https://allenai.org/papers/tulu-3-report.pdf (arXiv soon)
32
- - **Demo:** https://playground.allenai.org/
33
-
34
- ### Model Family
35
-
36
- | **Stage** | **Llama 3.1 8B** | **Llama 3.1 70B** |
37
- |----------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
38
- | **Base Model** | [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | [meta-llama/Llama-3.1-70B](https://huggingface.co/meta-llama/Llama-3.1-70B) |
39
- | **SFT** | [allenai/Llama-3.1-Tulu-3-8B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT) | [allenai/Llama-3.1-Tulu-3-70B-SFT](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT) |
40
- | **DPO** | [allenai/Llama-3.1-Tulu-3-8B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO) | [allenai/Llama-3.1-Tulu-3-70B-DPO](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO) |
41
- | **Final Models (RLVR)** | [allenai/Llama-3.1-Tulu-3-8B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B) | [allenai/Llama-3.1-Tulu-3-70B](https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B) |
42
- | **Reward Model (RM)**| [allenai/Llama-3.1-Tulu-3-8B-RM](https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-RM) | (Same as 8B) |
43
-
44
- ## Using the model
45
-
46
- ### Loading with HuggingFace
47
-
48
- To load the model with HuggingFace, use the following snippet:
49
- ```
50
- from transformers import AutoModelForCausalLM
51
-
52
- tulu_model = AutoModelForCausalLM.from_pretrained("allenai/Llama-3.1-Tulu-3-70B")
53
- ```
54
-
55
- ### VLLM
56
-
57
- As a Llama base model, the model can be easily served with:
58
- ```
59
- vllm serve allenai/Llama-3.1-Tulu-3-70B
60
- ```
61
- Note that given the long chat template of Llama, you may want to use `--max_model_len=8192`.
62
-
63
- ### Chat template
64
-
65
- The chat template for our models is formatted as:
66
- ```
67
- <|user|>\nHow are you doing?\n<|assistant|>\nI'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
68
- ```
69
- Or with new lines expanded:
70
- ```
71
- <|user|>
72
- How are you doing?
73
- <|assistant|>
74
- I'm just a computer program, so I don't have feelings, but I'm functioning as expected. How can I assist you today?<|endoftext|>
75
- ```
76
- It is embedded within the tokenizer as well, for `tokenizer.apply_chat_template`.
77
-
78
- ### System prompt
79
-
80
- In Ai2 demos, we use this system prompt by default:
81
- ```
82
- You are Tulu 3, a helpful and harmless AI Assistant built by the Allen Institute for AI.
83
- ```
84
- The model has not been trained with a specific system prompt in mind.
85
-
86
- ### Bias, Risks, and Limitations
87
-
88
- The Tülu3 models have limited safety training, but are not deployed automatically with in-the-loop filtering of responses like ChatGPT, so the model can produce problematic outputs (especially when prompted to do so).
89
- It is also unknown what the size and composition of the corpus was used to train the base Llama 3.1 models, however it is likely to have included a mix of Web data and technical sources like books and code.
90
- See the Falcon 180B model card for an example of this.
91
-
92
-
93
- ## Performance
94
-
95
- | Benchmark (eval) | Tülu 3 SFT 8B | Tülu 3 DPO 8B | Tülu 3 8B | Llama 3.1 8B Instruct | Qwen 2.5 7B Instruct | Magpie 8B | Gemma 2 9B Instruct | Ministral 8B Instruct |
96
- |---------------------------------|----------------|----------------|------------|------------------------|----------------------|-----------|---------------------|-----------------------|
97
- | **Avg.** | 60.4 | 64.4 | **64.8** | 62.2 | 57.8 | 44.7 | 55.2 | 58.3 |
98
- | **MMLU (0 shot, CoT)** | 65.9 | 68.7 | 68.2 | 71.2 | **76.6** | 62.0 | 74.6 | 68.5 |
99
- | **PopQA (15 shot)** | **29.3** | 29.3 | 29.1 | 20.2 | 18.1 | 22.5 | 28.3 | 20.2 |
100
- | **TruthfulQA (6 shot)** | 46.8 | 56.1 | 55.0 | 55.1 | **63.1** | 57.0 | 61.4 | 55.5 |
101
- | **BigBenchHard (3 shot, CoT)** | **67.9** | 65.8 | 66.0 | 62.8 | 21.7 | 0.9 | 2.5 | 56.2 |
102
- | **DROP (3 shot)** | 61.3 | 62.5 | **62.6** | 61.5 | 54.4 | 49.4 | 58.8 | 56.2 |
103
- | **MATH (4 shot CoT, Flex)** | 31.5 | 42.0 | **43.7** | 42.5 | 14.8 | 5.1 | 29.8 | 40.0 |
104
- | **GSM8K (8 shot, CoT)** | 76.2 | 84.3 | **87.6** | 83.4 | 83.8 | 61.2 | 79.7 | 80.0 |
105
- | **HumanEval (pass@10)** | 86.2 | 83.9 | 83.9 | 86.3 | **93.1** | 75.4 | 71.7 | 91.0 |
106
- | **HumanEval+ (pass@10)** | 81.4 | 78.6 | 79.2 | 82.9 | **89.7** | 69.1 | 67.0 | 88.5 |
107
- | **IFEval (prompt loose)** | 72.8 | 81.1 | **82.4** | 80.6 | 74.7 | 38.8 | 69.9 | 56.4 |
108
- | **AlpacaEval 2 (LC % win)** | 12.4 | 33.5 | 34.5 | 24.2 | 29.0 | **49.0** | 43.7 | 31.4 |
109
- | **Safety (6 task avg.)** | **93.1** | 87.2 | 85.5 | 75.2 | 75.0 | 46.4 | 75.5 | 56.2 |
110
-
111
- | Benchmark (eval) | Tülu 3 70B SFT | Tülu 3 DPO 70B | Tülu 3 70B | Llama 3.1 70B Instruct | Qwen 2.5 72B Instruct | Hermes 3 Llama 3.1 70B | Nemotron Llama 3.1 70B |
112
- |---------------------------------|-----------------|-----------------|-------------|-------------------------|-----------------------|------------------------|-------------------------|
113
- | **Avg.** | 72.6 | 75.9 | **76.0** | 73.4 | 71.5 | 68.3 | 65.5 |
114
- | **MMLU (0 shot, CoT)** | 78.9 | 83.3 | 83.1 | 85.3 | **85.5** | 80.4 | 83.8 |
115
- | **PopQA (15 shot)** | **48.6** | 46.3 | 46.5 | 46.4 | 30.6 | 48.1 | 36.4 |
116
- | **TruthfulQA (6 shot)** | 55.7 | 67.9 | 67.6 | 66.8 | **69.9** | 66.5 | 62.6 |
117
- | **BigBenchHard (3 shot, CoT)** | **82.7** | 81.8 | 82.0 | 73.8 | 67.2 | 82.1 | 0.7 |
118
- | **DROP (3 shot)** | **77.2** | 74.1 | 74.3 | 77.0 | 34.2 | 73.2 | 68.8 |
119
- | **MATH (4 shot CoT, Flex)** | 53.7 | 62.3 | 63.0 | 56.4 | **74.3** | 41.9 | 55.0 |
120
- | **GSM8K (8 shot, CoT)** | 91.1 | 93.5 | 93.5 | **93.7** | 89.5 | 90.0 | 84.7 |
121
- | **HumanEval (pass@10)** | 92.9 | 92.4 | 92.4 | 93.6 | 94.0 | 89.6 | **94.1** |
122
- | **HumanEval+ (pass@10)** | 87.3 | 88.4 | 88.0 | 89.5 | **90.8** | 85.9 | 85.5 |
123
- | **IFEval (prompt loose)** | 82.1 | 82.6 | 83.2 | **88.0** | 87.6 | 76.0 | 79.9 |
124
- | **AlpacaEval 2 (LC % win)** | 26.3 | 49.6 | 49.8 | 33.4 | 47.7 | 28.4 | **66.1** |
125
- | **Safety (6 task avg.)** | **94.4** | 89.0 | 88.3 | 76.5 | 87.0 | 57.9 | 69.0 |
126
-
127
-
128
- ## Hyperparamters
129
-
130
- PPO settings for RLVR:
131
- - **Learning Rate**: 3 × 10⁻⁷
132
- - **Discount Factor (gamma)**: 1.0
133
- - **General Advantage Estimation (lambda)**: 0.95
134
- - **Mini-batches (N_mb)**: 1
135
- - **PPO Update Iterations (K)**: 4
136
- - **PPO's Clipping Coefficient (epsilon)**: 0.2
137
- - **Value Function Coefficient (c1)**: 0.1
138
- - **Gradient Norm Threshold**: 1.0
139
- - **Learning Rate Schedule**: Linear
140
- - **Generation Temperature**: 1.0
141
- - **Batch Size (effective)**: 512
142
- - **Max Token Length**: 2,048
143
- - **Max Prompt Token Length**: 2,048
144
- - **Penalty Reward Value for Responses without an EOS Token**: -10.0
145
- - **Response Length**: 1,024 (but 2,048 for MATH)
146
- - **Total Episodes**: 100,000
147
- - **KL penalty coefficient (beta)**: [0.1, 0.05, 0.03, 0.01]
148
- - **Warm up ratio (omega)**: 0.0
149
-
150
- ## License and use
151
-
152
- All Llama 3.1 Tülu3 models are released under Meta's [Llama 3.1 Community License Agreement](https://www.llama.com/llama3_1/license/).
153
- Llama 3.1 is licensed under the Llama 3.1 Community License, Copyright © Meta Platforms, Inc.
154
- Tülu3 is intended for research and educational use.
155
- For more information, please see our [Responsible Use Guidelines](https://allenai.org/responsible-use).
156
-
157
- The models have been fine-tuned using a dataset mix with outputs generated from third party models and are subject to additional terms:
158
- [Gemma Terms of Use](https://ai.google.dev/gemma/terms) and [Qwen License Agreement](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct/blob/main/LICENSE) (models were improved using Qwen 2.5).
159
-
160
-
161
- ## Citation
162
-
163
- If Tülu3 or any of the related materials were helpful to your work, please cite:
164
- ```
165
- @article{lambert2024tulu3,
166
- title = {Tülu 3: Pushing Frontiers in Open Language Model Post-Training},
167
- author = {
168
- Nathan Lambert and
169
- Jacob Morrison and
170
- Valentina Pyatkin and
171
- Shengyi Huang and
172
- Hamish Ivison and
173
- Faeze Brahman and
174
- Lester James V. Miranda and
175
- Alisa Liu and
176
- Nouha Dziri and
177
- Shane Lyu and
178
- Yuling Gu and
179
- Saumya Malik and
180
- Victoria Graf and
181
- Jena D. Hwang and
182
- Jiangjiang Yang and
183
- Ronan Le Bras and
184
- Oyvind Tafjord and
185
- Chris Wilhelm and
186
- Luca Soldaini and
187
- Noah A. Smith and
188
- Yizhong Wang and
189
- Pradeep Dasigi and
190
- Hannaneh Hajishirzi
191
- },
192
- year = {2024},
193
- email = {[email protected]}
194
- }
195
- ```