--- license: apache-2.0 library_name: sklearn tags: - tabular-classification - baseline-trainer --- ## Baseline Model trained on Airlinesuiztcxpg to apply classification on Delay **Metrics of the best model:** accuracy 0.612210 average_precision 0.405509 roc_auc 0.635865 recall_macro 0.594188 f1_macro 0.569725 Name: LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000), dtype: float64 **See model plot below:**
Pipeline(steps=[('easypreprocessor',EasyPreprocessor(types=             continuous  dirty_float  low_card_int  ...   date  free_string  useless
Airline           False        False         False  ...  False        False    False
Flight             True        False         False  ...  False        False    False
AirportFrom       False        False         False  ...  False         True    False
AirportTo         False        False         False  ...  False         True    False
Time               True        False         False  ...  False        False    False
Length             True        False         False  ...  False        False    False[6 rows x 7 columns])),('logisticregression',LogisticRegression(C=0.1, class_weight='balanced',max_iter=1000))])
In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.
On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.
**Disclaimer:** This model is trained with dabl library as a baseline, for better results, use [AutoTrain](https://huggingface.co/autotrain). **Logs of training** including the models tried in the process can be found in logs.txt