|
Logging training |
|
Running DummyClassifier() |
|
accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422 |
|
=== new best DummyClassifier() (using recall_macro): |
|
accuracy: 0.732 average_precision: 0.268 roc_auc: 0.500 recall_macro: 0.500 f1_macro: 0.422 |
|
|
|
Running GaussianNB() |
|
accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464 |
|
=== new best GaussianNB() (using recall_macro): |
|
accuracy: 0.466 average_precision: 0.361 roc_auc: 0.619 recall_macro: 0.570 f1_macro: 0.464 |
|
|
|
Running MultinomialNB() |
|
accuracy: 0.732 average_precision: 0.377 roc_auc: 0.614 recall_macro: 0.500 f1_macro: 0.422 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=1) |
|
accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562 |
|
Running DecisionTreeClassifier(class_weight='balanced', max_depth=5) |
|
accuracy: 0.630 average_precision: 0.347 roc_auc: 0.579 recall_macro: 0.564 f1_macro: 0.550 |
|
Running DecisionTreeClassifier(class_weight='balanced', min_impurity_decrease=0.01) |
|
accuracy: 0.699 average_precision: 0.305 roc_auc: 0.561 recall_macro: 0.561 f1_macro: 0.562 |
|
Running LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570 |
|
=== new best LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) (using recall_macro): |
|
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570 |
|
|
|
Running LogisticRegression(C=1, class_weight='balanced', max_iter=1000) |
|
accuracy: 0.600 average_precision: 0.404 roc_auc: 0.635 recall_macro: 0.592 f1_macro: 0.563 |
|
|
|
Best model: |
|
LogisticRegression(C=0.1, class_weight='balanced', max_iter=1000) |
|
Best Scores: |
|
accuracy: 0.612 average_precision: 0.406 roc_auc: 0.636 recall_macro: 0.594 f1_macro: 0.570 |
|
|