Kleber commited on
Commit
3ec1199
·
verified ·
1 Parent(s): 2197efe

PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 247.87 +/- 46.87
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79cede767010>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79cede7670a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79cede767130>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79cede7671c0>", "_build": "<function ActorCriticPolicy._build at 0x79cede767250>", "forward": "<function ActorCriticPolicy.forward at 0x79cede7672e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79cede767370>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79cede767400>", "_predict": "<function ActorCriticPolicy._predict at 0x79cede767490>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79cede767520>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79cede7675b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79cede767640>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79cede6fc680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1730894872461369808, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPMrpz31cF0+XELHvOwraL7tKzg94kGWvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBpqzRhMJyMAWyUTQcBjAF0lEdAnegWIj4YanV9lChoBkdAcg0UeMhoumgHTRcBaAhHQJ3q9E2HclB1fZQoaAZHQG3GSr5qM3toB00QAWgIR0Cd7IckdFOPdX2UKGgGR0Bx3hWgezUraAdL/WgIR0Cd7gYJmdy1dX2UKGgGR0Bxbp2ECeVcaAdNBgFoCEdAne+OW4Vh1HV9lChoBkdAcH4446wMY2gHTQoBaAhHQJ3yTl5nlGR1fZQoaAZHQHHU4/3WWhRoB00KAWgIR0Cd8/EXcgyNdX2UKGgGR0BwQaQ8wHqvaAdNKwFoCEdAnfWntrsSkHV9lChoBkdAcM3MBIWgvmgHTSUBaAhHQJ33YG3WnTB1fZQoaAZHQG8dbJOnEVFoB00SAWgIR0Cd+lMEidJ8dX2UKGgGR0Bxsd71Iy0saAdL/mgIR0Cd+9CSRr8BdX2UKGgGR0BwCD9n9NvgaAdNFgFoCEdAnf2Uxh2GI3V9lChoBkdAb+eJXyRSxmgHTQ4BaAhHQJ3/qfEn9eh1fZQoaAZHQHDLXtrsSkFoB0v7aAhHQJ4DJW2gFot1fZQoaAZHQG4qRQzk6tFoB0v9aAhHQJ4FSWE9Mbp1fZQoaAZHQHEImLpA2Q5oB00NAWgIR0CeB2hQFcIJdX2UKGgGR0BvXkd3jdYXaAdNBgFoCEdAnglxtLteD3V9lChoBkdAcGS9Aood/GgHS/loCEdAngwpuQ6p53V9lChoBkdAcEuQLNOdoWgHTQ4BaAhHQJ4NtPi1iON1fZQoaAZHQG3SCp3os7NoB00KAWgIR0CeDzLy+YdAdX2UKGgGR0Bwlusny/bkaAdL/mgIR0CeEMNUwSJ1dX2UKGgGR0BxDFD6WPcSaAdNKAFoCEdAnhO3nyNGVnV9lChoBkdAYYd1uBMBZWgHTegDaAhHQJ4a7RLK3d91fZQoaAZHQHBfW/ag261oB00lAWgIR0CeHKqUNayKdX2UKGgGR0BTfTohY/3WaAdLymgIR0CeHcaFVT73dX2UKGgGR0ByFY4ACGN8aAdL8WgIR0CeHyMFlkH2dX2UKGgGR0BxBTTTfBN3aAdL1WgIR0CeIaNJvo/zdX2UKGgGR0ByfUGVzIV/aAdNLgFoCEdAniNmaH9FWnV9lChoBkdAcPqsMRYigWgHTQ4BaAhHQJ4k/dFfAsV1fZQoaAZHQG8SPNu+AVhoB0v9aAhHQJ4mbps41gp1fZQoaAZHQG8PtlZowmFoB0v5aAhHQJ4pI274BWB1fZQoaAZHQHH4n9m6GxloB000AWgIR0CeKuMNMGordX2UKGgGR0ByCHhybQTmaAdL8GgIR0CeLEpPykKvdX2UKGgGR0BuW52jfvWpaAdNEwFoCEdAni8Q9vCMxXV9lChoBkdAcK9LuQZGa2gHTSABaAhHQJ4wxw4sEq51fZQoaAZHQG+ac6mwaBJoB00eAWgIR0CeMvsSCe3AdX2UKGgGR0Bwqm0PYnOTaAdNJwFoCEdAnjUUQ5FPSHV9lChoBkdAcb5jvuw5emgHS/NoCEdAnjjTr3TNMXV9lChoBkdAcrSE0zj3mGgHS+loCEdAnjrmhmGucXV9lChoBkdAbtpBX0XgtWgHTREBaAhHQJ48uGHpKSR1fZQoaAZHQHGhSbQTmGNoB00NAWgIR0CePlR9gF5fdX2UKGgGR0BxOgfIS13MaAdL8mgIR0CeQQ1PWQOndX2UKGgGR0BwBQJ0GNaRaAdNEAFoCEdAnkKyEYfnwHV9lChoBkdAcbBNTcZccGgHS/NoCEdAnkQYhdMTOHV9lChoBkdAcaIcPOIInmgHS+JoCEdAnkVb5uZTh3V9lChoBkdAbiqDklu3t2gHS/toCEdAnkgamoBJZnV9lChoBkdAcStfoicG1WgHS/JoCEdAnkl5GjKxLXV9lChoBkdAcaIm2b5M12gHTUMCaAhHQJ5M3ItDlYF1fZQoaAZHQDSVFRYRuj1oB0vbaAhHQJ5Paz5XU6R1fZQoaAZHQFDvLt/nW8RoB0ukaAhHQJ5QXta6jFh1fZQoaAZHQG6alP8AJcBoB00BAWgIR0CeUdPRzBAOdX2UKGgGR0BxzilEZzgdaAdNBwFoCEdAnlNblzU7S3V9lChoBkdAc2YsCT2WZGgHS+1oCEdAnlS97rs0HnV9lChoBkdAcAVuWa+ev2gHTSABaAhHQJ5Xiy3Td+J1fZQoaAZHQG+BMI3R5TtoB00MAWgIR0CeWRAbQ1JldX2UKGgGR0Bts9qSHM2WaAdNIAFoCEdAnlq3LNfPX3V9lChoBkdAcF9mW+oLomgHTQ8BaAhHQJ5dag5BC2N1fZQoaAZHQG5s/ozN2TxoB0vyaAhHQJ5ezVSXMQp1fZQoaAZHQHJnXSOR1YBoB0v4aAhHQJ5gLqB3A211fZQoaAZHQHGVIy0rsjVoB00ZAWgIR0CeYcIqbz9TdX2UKGgGR0Bx2J+c6NlzaAdL62gIR0CeZJ0HyEtedX2UKGgGR0BudS3NLUTdaAdNIQFoCEdAnma4kzGgjHV9lChoBkdAcio5tm+TNmgHTW0BaAhHQJ5pac7Qswt1fZQoaAZHQG2oJa7mMfloB0v/aAhHQJ5rdbFCLMt1fZQoaAZHQHFh8OCoS+RoB0v6aAhHQJ5u7MfRu0l1fZQoaAZHQHGmZMDfWMFoB00UAWgIR0CecH9X9zfadX2UKGgGR0Bxd59Sde6aaAdL8GgIR0Cecgk0Jng6dX2UKGgGR0BxqzeSB9ThaAdNAwFoCEdAnnOUzj3mFXV9lChoBkdAcGRBfKISDmgHTQEBaAhHQJ52SAWi1zB1fZQoaAZHQHCAUOmR/3FoB00BAWgIR0Ced8y5Zr57dX2UKGgGR0BspYyGi5/caAdNGQFoCEdAnnllnAZbZHV9lChoBkdAbR0jt5UtI2gHTQsBaAhHQJ5648PnSv11fZQoaAZHQG8A6Ymb9ZRoB0vpaAhHQJ59eX1J17p1fZQoaAZHQHEcpUxVQyhoB0vraAhHQJ5+zbrTpgV1fZQoaAZHQHF6xLbpNbloB00vAWgIR0CegIys0YTCdX2UKGgGR0Bx8TnKW9lFaAdNFQFoCEdAnoNBfKISDnV9lChoBkdAbXcWyC4Bm2gHS/5oCEdAnoS76ciGFnV9lChoBkdAb4urNnoPkWgHTSwBaAhHQJ6GcUL2HtZ1fZQoaAZHQHBf8OLBKthoB00bAWgIR0CeiAbo8p1BdX2UKGgGR0BwWyc0+C9RaAdNGAFoCEdAnorFBIFvAHV9lChoBkdAb9FjHXEqD2gHTRoBaAhHQJ6MZcB2fTV1fZQoaAZHQHDQsunMt9RoB0vxaAhHQJ6Nxfsu3+d1fZQoaAZHQG/HVv2oNutoB00XAWgIR0Cej1SF49owdX2UKGgGR0BtkZ8hLXcyaAdL8WgIR0CekfL1mJ3xdX2UKGgGR0BwJfoFFDv3aAdNDgFoCEdAnpN+MERranV9lChoBkdAcRQ8bJfYz2gHTRMBaAhHQJ6VElolD4R1fZQoaAZHQHIxW2w3YL9oB0vgaAhHQJ6WVqUNayN1fZQoaAZHQHE/xh6Skj5oB0v6aAhHQJ6Z3K3d9Dx1fZQoaAZHQHDGIx59mYloB0v7aAhHQJ6bq2NNrTJ1fZQoaAZHQHGrXcYZVGVoB00rAmgIR0CeoF7CiyprdX2UKGgGR0BxLfszEaVEaAdNRwFoCEdAnqOCRSxZ+3V9lChoBkdAZS0t4iX6ZmgHTegDaAhHQJ6qeMir1dx1fZQoaAZHQHJuyCe2/i5oB00XAWgIR0CerBWCmMwUdX2UKGgGR0BxBYwK0D2baAdL5GgIR0CerWq4H5aedX2UKGgGR0BwRpeAuqWDaAdL72gIR0CersVCojwAdX2UKGgGR0BwuWXQdCE6aAdL+mgIR0CesWVzp5eJdX2UKGgGR0BvmhvBJqZdaAdL9mgIR0CessTsIE8rdX2UKGgGR0BwUivcJtzkaAdL5mgIR0CetAozeoDQdX2UKGgGR0BwHiksSTQmaAdL8GgIR0CetWpi7TUidX2UKGgGR0BeZXanJkoXaAdN6ANoCEdAnrxtCAtnPHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4521b35f4aa230268b2475aab1ce08c189714c3ce2d8d9819b9f60a7441dce4
3
+ size 147310
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x79cede767010>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79cede7670a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79cede767130>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79cede7671c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x79cede767250>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x79cede7672e0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x79cede767370>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79cede767400>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x79cede767490>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79cede767520>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79cede7675b0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x79cede767640>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x79cede6fc680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1000448,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1730894872461369808,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPMrpz31cF0+XELHvOwraL7tKzg94kGWvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.00044800000000000395,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVGgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBpqzRhMJyMAWyUTQcBjAF0lEdAnegWIj4YanV9lChoBkdAcg0UeMhoumgHTRcBaAhHQJ3q9E2HclB1fZQoaAZHQG3GSr5qM3toB00QAWgIR0Cd7IckdFOPdX2UKGgGR0Bx3hWgezUraAdL/WgIR0Cd7gYJmdy1dX2UKGgGR0Bxbp2ECeVcaAdNBgFoCEdAne+OW4Vh1HV9lChoBkdAcH4446wMY2gHTQoBaAhHQJ3yTl5nlGR1fZQoaAZHQHHU4/3WWhRoB00KAWgIR0Cd8/EXcgyNdX2UKGgGR0BwQaQ8wHqvaAdNKwFoCEdAnfWntrsSkHV9lChoBkdAcM3MBIWgvmgHTSUBaAhHQJ33YG3WnTB1fZQoaAZHQG8dbJOnEVFoB00SAWgIR0Cd+lMEidJ8dX2UKGgGR0Bxsd71Iy0saAdL/mgIR0Cd+9CSRr8BdX2UKGgGR0BwCD9n9NvgaAdNFgFoCEdAnf2Uxh2GI3V9lChoBkdAb+eJXyRSxmgHTQ4BaAhHQJ3/qfEn9eh1fZQoaAZHQHDLXtrsSkFoB0v7aAhHQJ4DJW2gFot1fZQoaAZHQG4qRQzk6tFoB0v9aAhHQJ4FSWE9Mbp1fZQoaAZHQHEImLpA2Q5oB00NAWgIR0CeB2hQFcIJdX2UKGgGR0BvXkd3jdYXaAdNBgFoCEdAnglxtLteD3V9lChoBkdAcGS9Aood/GgHS/loCEdAngwpuQ6p53V9lChoBkdAcEuQLNOdoWgHTQ4BaAhHQJ4NtPi1iON1fZQoaAZHQG3SCp3os7NoB00KAWgIR0CeDzLy+YdAdX2UKGgGR0Bwlusny/bkaAdL/mgIR0CeEMNUwSJ1dX2UKGgGR0BxDFD6WPcSaAdNKAFoCEdAnhO3nyNGVnV9lChoBkdAYYd1uBMBZWgHTegDaAhHQJ4a7RLK3d91fZQoaAZHQHBfW/ag261oB00lAWgIR0CeHKqUNayKdX2UKGgGR0BTfTohY/3WaAdLymgIR0CeHcaFVT73dX2UKGgGR0ByFY4ACGN8aAdL8WgIR0CeHyMFlkH2dX2UKGgGR0BxBTTTfBN3aAdL1WgIR0CeIaNJvo/zdX2UKGgGR0ByfUGVzIV/aAdNLgFoCEdAniNmaH9FWnV9lChoBkdAcPqsMRYigWgHTQ4BaAhHQJ4k/dFfAsV1fZQoaAZHQG8SPNu+AVhoB0v9aAhHQJ4mbps41gp1fZQoaAZHQG8PtlZowmFoB0v5aAhHQJ4pI274BWB1fZQoaAZHQHH4n9m6GxloB000AWgIR0CeKuMNMGordX2UKGgGR0ByCHhybQTmaAdL8GgIR0CeLEpPykKvdX2UKGgGR0BuW52jfvWpaAdNEwFoCEdAni8Q9vCMxXV9lChoBkdAcK9LuQZGa2gHTSABaAhHQJ4wxw4sEq51fZQoaAZHQG+ac6mwaBJoB00eAWgIR0CeMvsSCe3AdX2UKGgGR0Bwqm0PYnOTaAdNJwFoCEdAnjUUQ5FPSHV9lChoBkdAcb5jvuw5emgHS/NoCEdAnjjTr3TNMXV9lChoBkdAcrSE0zj3mGgHS+loCEdAnjrmhmGucXV9lChoBkdAbtpBX0XgtWgHTREBaAhHQJ48uGHpKSR1fZQoaAZHQHGhSbQTmGNoB00NAWgIR0CePlR9gF5fdX2UKGgGR0BxOgfIS13MaAdL8mgIR0CeQQ1PWQOndX2UKGgGR0BwBQJ0GNaRaAdNEAFoCEdAnkKyEYfnwHV9lChoBkdAcbBNTcZccGgHS/NoCEdAnkQYhdMTOHV9lChoBkdAcaIcPOIInmgHS+JoCEdAnkVb5uZTh3V9lChoBkdAbiqDklu3t2gHS/toCEdAnkgamoBJZnV9lChoBkdAcStfoicG1WgHS/JoCEdAnkl5GjKxLXV9lChoBkdAcaIm2b5M12gHTUMCaAhHQJ5M3ItDlYF1fZQoaAZHQDSVFRYRuj1oB0vbaAhHQJ5Paz5XU6R1fZQoaAZHQFDvLt/nW8RoB0ukaAhHQJ5QXta6jFh1fZQoaAZHQG6alP8AJcBoB00BAWgIR0CeUdPRzBAOdX2UKGgGR0BxzilEZzgdaAdNBwFoCEdAnlNblzU7S3V9lChoBkdAc2YsCT2WZGgHS+1oCEdAnlS97rs0HnV9lChoBkdAcAVuWa+ev2gHTSABaAhHQJ5Xiy3Td+J1fZQoaAZHQG+BMI3R5TtoB00MAWgIR0CeWRAbQ1JldX2UKGgGR0Bts9qSHM2WaAdNIAFoCEdAnlq3LNfPX3V9lChoBkdAcF9mW+oLomgHTQ8BaAhHQJ5dag5BC2N1fZQoaAZHQG5s/ozN2TxoB0vyaAhHQJ5ezVSXMQp1fZQoaAZHQHJnXSOR1YBoB0v4aAhHQJ5gLqB3A211fZQoaAZHQHGVIy0rsjVoB00ZAWgIR0CeYcIqbz9TdX2UKGgGR0Bx2J+c6NlzaAdL62gIR0CeZJ0HyEtedX2UKGgGR0BudS3NLUTdaAdNIQFoCEdAnma4kzGgjHV9lChoBkdAcio5tm+TNmgHTW0BaAhHQJ5pac7Qswt1fZQoaAZHQG2oJa7mMfloB0v/aAhHQJ5rdbFCLMt1fZQoaAZHQHFh8OCoS+RoB0v6aAhHQJ5u7MfRu0l1fZQoaAZHQHGmZMDfWMFoB00UAWgIR0CecH9X9zfadX2UKGgGR0Bxd59Sde6aaAdL8GgIR0Cecgk0Jng6dX2UKGgGR0BxqzeSB9ThaAdNAwFoCEdAnnOUzj3mFXV9lChoBkdAcGRBfKISDmgHTQEBaAhHQJ52SAWi1zB1fZQoaAZHQHCAUOmR/3FoB00BAWgIR0Ced8y5Zr57dX2UKGgGR0BspYyGi5/caAdNGQFoCEdAnnllnAZbZHV9lChoBkdAbR0jt5UtI2gHTQsBaAhHQJ5648PnSv11fZQoaAZHQG8A6Ymb9ZRoB0vpaAhHQJ59eX1J17p1fZQoaAZHQHEcpUxVQyhoB0vraAhHQJ5+zbrTpgV1fZQoaAZHQHF6xLbpNbloB00vAWgIR0CegIys0YTCdX2UKGgGR0Bx8TnKW9lFaAdNFQFoCEdAnoNBfKISDnV9lChoBkdAbXcWyC4Bm2gHS/5oCEdAnoS76ciGFnV9lChoBkdAb4urNnoPkWgHTSwBaAhHQJ6GcUL2HtZ1fZQoaAZHQHBf8OLBKthoB00bAWgIR0CeiAbo8p1BdX2UKGgGR0BwWyc0+C9RaAdNGAFoCEdAnorFBIFvAHV9lChoBkdAb9FjHXEqD2gHTRoBaAhHQJ6MZcB2fTV1fZQoaAZHQHDQsunMt9RoB0vxaAhHQJ6Nxfsu3+d1fZQoaAZHQG/HVv2oNutoB00XAWgIR0Cej1SF49owdX2UKGgGR0BtkZ8hLXcyaAdL8WgIR0CekfL1mJ3xdX2UKGgGR0BwJfoFFDv3aAdNDgFoCEdAnpN+MERranV9lChoBkdAcRQ8bJfYz2gHTRMBaAhHQJ6VElolD4R1fZQoaAZHQHIxW2w3YL9oB0vgaAhHQJ6WVqUNayN1fZQoaAZHQHE/xh6Skj5oB0v6aAhHQJ6Z3K3d9Dx1fZQoaAZHQHDGIx59mYloB0v7aAhHQJ6bq2NNrTJ1fZQoaAZHQHGrXcYZVGVoB00rAmgIR0CeoF7CiyprdX2UKGgGR0BxLfszEaVEaAdNRwFoCEdAnqOCRSxZ+3V9lChoBkdAZS0t4iX6ZmgHTegDaAhHQJ6qeMir1dx1fZQoaAZHQHJuyCe2/i5oB00XAWgIR0CerBWCmMwUdX2UKGgGR0BxBYwK0D2baAdL5GgIR0CerWq4H5aedX2UKGgGR0BwRpeAuqWDaAdL72gIR0CersVCojwAdX2UKGgGR0BwuWXQdCE6aAdL+mgIR0CesWVzp5eJdX2UKGgGR0BvmhvBJqZdaAdL9mgIR0CessTsIE8rdX2UKGgGR0BwUivcJtzkaAdL5mgIR0CetAozeoDQdX2UKGgGR0BwHiksSTQmaAdL8GgIR0CetWpi7TUidX2UKGgGR0BeZXanJkoXaAdN6ANoCEdAnrxtCAtnPHVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 3908,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 1,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0f5c9e3c4afa48b03891df40b8991bdfc04ad65374f55999abb5cf3518d7dc2
3
+ size 88362
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22df9f64cfed4bae70ca6f3d3961a34ed636d6960a98286d59de02c927a078f7
3
+ size 43762
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.5.0+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.26.4
7
+ - Cloudpickle: 3.1.0
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (159 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 247.86511681587618, "std_reward": 46.86914404048896, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-11-06T13:21:11.198188"}