File size: 8,485 Bytes
7cf2814
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---

# xsum_108_50000_25000_validation

This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. 
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. 

## Usage 

To use this model, please install BERTopic:

```
pip install -U bertopic
```

You can use the model as follows:

```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/xsum_108_50000_25000_validation")

topic_model.get_topic_info()
```

## Topic overview

* Number of topics: 80
* Number of training documents: 11332

<details>
  <summary>Click here for an overview of all topics.</summary>
  
  | Topic ID | Topic Keywords | Topic Frequency | Label | 
|----------|----------------|-----------------|-------| 
| -1 | said - mr - people - would - also | 5 | -1_said_mr_people_would | 
| 0 | win - game - league - club - player | 4532 | 0_win_game_league_club | 
| 1 | police - court - said - mr - officer | 2119 | 1_police_court_said_mr | 
| 2 | world - sport - olympic - champion - gold | 1037 | 2_world_sport_olympic_champion | 
| 3 | bank - sale - growth - price - rate | 604 | 3_bank_sale_growth_price | 
| 4 | data - user - company - firm - mobile | 225 | 4_data_user_company_firm | 
| 5 | film - star - album - show - best | 204 | 5_film_star_album_show | 
| 6 | school - education - pupil - teacher - student | 183 | 6_school_education_pupil_teacher | 
| 7 | nhs - care - patient - hospital - health | 107 | 7_nhs_care_patient_hospital | 
| 8 | boko - haram - president - un - mr | 103 | 8_boko_haram_president_un | 
| 9 | labour - party - corbyn - ukip - mps | 94 | 9_labour_party_corbyn_ukip | 
| 10 | bird - specie - tree - ash - animal | 82 | 10_bird_specie_tree_ash | 
| 11 | northern - ireland - sinn - fin - dup | 77 | 11_northern_ireland_sinn_fin | 
| 12 | trump - mr - clinton - republican - president | 73 | 12_trump_mr_clinton_republican | 
| 13 | fire - blaze - smoke - scene - firefighter | 73 | 13_fire_blaze_smoke_scene | 
| 14 | water - flood - flooding - river - rain | 67 | 14_water_flood_flooding_river | 
| 15 | art - museum - artist - gallery - auction | 63 | 15_art_museum_artist_gallery | 
| 16 | transport - road - route - traffic - bridge | 58 | 16_transport_road_route_traffic | 
| 17 | ebola - virus - outbreak - vaccine - health | 54 | 17_ebola_virus_outbreak_vaccine | 
| 18 | syrian - syria - rebel - aleppo - iraq | 53 | 18_syrian_syria_rebel_aleppo | 
| 19 | race - hamilton - f1 - mercedes - rosberg | 51 | 19_race_hamilton_f1_mercedes | 
| 20 | welsh - wales - plaid - assembly - labour | 51 | 20_welsh_wales_plaid_assembly | 
| 21 | council - site - building - planning - centre | 49 | 21_council_site_building_planning | 
| 22 | rmt - rail - train - strike - service | 47 | 22_rmt_rail_train_strike | 
| 23 | ice - space - satellite - scientist - earth | 47 | 23_ice_space_satellite_scientist | 
| 24 | flight - plane - airport - aircraft - pilot | 45 | 24_flight_plane_airport_aircraft | 
| 25 | korea - north - china - korean - us | 43 | 25_korea_north_china_korean | 
| 26 | eu - uk - brexit - migration - immigration | 43 | 26_eu_uk_brexit_migration | 
| 27 | taliban - afghan - afghanistan - kabul - attack | 43 | 27_taliban_afghan_afghanistan_kabul | 
| 28 | hong - kong - china - chinese - liu | 42 | 28_hong_kong_china_chinese | 
| 29 | energy - wind - turbine - farm - electricity | 42 | 29_energy_wind_turbine_farm | 
| 30 | maduro - farc - president - venezuela - opposition | 42 | 30_maduro_farc_president_venezuela | 
| 31 | scottish - scotland - referendum - snp - independence | 41 | 31_scottish_scotland_referendum_snp | 
| 32 | cancer - risk - woman - study - diabetes | 41 | 32_cancer_risk_woman_study | 
| 33 | war - battle - royal - service - regiment | 40 | 33_war_battle_royal_service | 
| 34 | yn - ar - ei - yr - bod | 40 | 34_yn_ar_ei_yr | 
| 35 | space - mars - iss - astronaut - updated | 39 | 35_space_mars_iss_astronaut | 
| 36 | india - indias - delhi - hindu - indian | 39 | 36_india_indias_delhi_hindu | 
| 37 | russia - russian - ukraine - putin - president | 38 | 37_russia_russian_ukraine_putin | 
| 38 | tax - budget - chancellor - government - osborne | 37 | 38_tax_budget_chancellor_government | 
| 39 | coastguard - boat - lifeboat - rnli - rescue | 32 | 39_coastguard_boat_lifeboat_rnli | 
| 40 | elephant - ivory - zoo - animal - rhino | 32 | 40_elephant_ivory_zoo_animal | 
| 41 | pension - pay - wage - income - pot | 32 | 41_pension_pay_wage_income | 
| 42 | abortion - marriage - woman - samesex - gay | 31 | 42_abortion_marriage_woman_samesex | 
| 43 | paris - french - attack - france - jewish | 29 | 43_paris_french_attack_france | 
| 44 | dog - pet - animal - hare - police | 26 | 44_dog_pet_animal_hare | 
| 45 | unsupported - updated - playback - device - media | 25 | 45_unsupported_updated_playback_device | 
| 46 | pollution - waste - air - bag - bin | 24 | 46_pollution_waste_air_bag | 
| 47 | climate - carbon - emission - coal - gas | 24 | 47_climate_carbon_emission_coal | 
| 48 | mortgage - credit - lender - price - property | 24 | 48_mortgage_credit_lender_price | 
| 49 | ahmed - court - terrorism - police - naseer | 24 | 49_ahmed_court_terrorism_police | 
| 50 | train - driver - raib - incident - rail | 23 | 50_train_driver_raib_incident | 
| 51 | hoard - coin - museum - display - found | 23 | 51_hoard_coin_museum_display | 
| 52 | eu - trade - uk - market - brexit | 23 | 52_eu_trade_uk_market | 
| 53 | greece - greek - eurozone - debt - bailout | 22 | 53_greece_greek_eurozone_debt | 
| 54 | whale - shark - water - dolphin - fish | 21 | 54_whale_shark_water_dolphin | 
| 55 | steel - tata - industry - plant - uk | 17 | 55_steel_tata_industry_plant | 
| 56 | prince - duchess - duke - royal - princess | 15 | 56_prince_duchess_duke_royal | 
| 57 | camp - nazi - locsin - germany - extradition | 15 | 57_camp_nazi_locsin_germany | 
| 58 | migrant - refugee - border - turkey - greek | 15 | 58_migrant_refugee_border_turkey | 
| 59 | calais - migrant - camp - jungle - refugee | 14 | 59_calais_migrant_camp_jungle | 
| 60 | gun - violence - police - shooting - baltimore | 14 | 60_gun_violence_police_shooting | 
| 61 | rousseff - impeachment - senate - temer - petrobras | 13 | 61_rousseff_impeachment_senate_temer | 
| 62 | macron - le - germany - pen - macrons | 13 | 62_macron_le_germany_pen | 
| 63 | turkey - erdogan - turkish - turkeys - hdp | 13 | 63_turkey_erdogan_turkish_turkeys | 
| 64 | lodge - belfast - ballysillan - parade - paper | 12 | 64_lodge_belfast_ballysillan_parade | 
| 65 | castle - hull - staffin - crofters - house | 11 | 65_castle_hull_staffin_crofters | 
| 66 | food - cocoa - fairtrade - advertising - sale | 10 | 66_food_cocoa_fairtrade_advertising | 
| 67 | israel - hamas - israeli - gaza - palestinians | 10 | 67_israel_hamas_israeli_gaza | 
| 68 | bank - account - rbs - overdraft - note | 10 | 68_bank_account_rbs_overdraft | 
| 69 | runway - airport - heathrow - airports - flight | 8 | 69_runway_airport_heathrow_airports | 
| 70 | rescue - mountain - avalanche - climbing - nepal | 7 | 70_rescue_mountain_avalanche_climbing | 
| 71 | council - privatisation - deal - government - carmarthenshires | 7 | 71_council_privatisation_deal_government | 
| 72 | ruddy - inla - information - police - family | 6 | 72_ruddy_inla_information_police | 
| 73 | drug - prescribed - psychoactive - drugs - lyrica | 6 | 73_drug_prescribed_psychoactive_drugs | 
| 74 | kitty - book - author - publisher - prize | 6 | 74_kitty_book_author_publisher | 
| 75 | search - cabin - airways - plane - amsa | 6 | 75_search_cabin_airways_plane | 
| 76 | sterkel - alert - examined - detonated - rifle | 6 | 76_sterkel_alert_examined_detonated | 
| 77 | ambulance - service - aberglaslyn - called - inverclyde | 5 | 77_ambulance_service_aberglaslyn_called | 
| 78 | research - 3d - science - prof - vision | 5 | 78_research_3d_science_prof |
  
</details>

## Training hyperparameters

* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False

## Framework versions

* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.57.1
* Plotly: 5.13.1
* Python: 3.10.12