File size: 2,722 Bytes
456d816 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# cnn_dailymail_6789_3000_1500_test
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("KingKazma/cnn_dailymail_6789_3000_1500_test")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 15
* Number of training documents: 1500
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | season - league - liverpool - player - club | 12 | -1_season_league_liverpool_player |
| 0 | said - one - police - year - people | 151 | 0_said_one_police_year |
| 1 | madrid - league - champions - real - barcelona | 1070 | 1_madrid_league_champions_real |
| 2 | chelsea - united - manchester - van - league | 55 | 2_chelsea_united_manchester_van |
| 3 | fight - pacquiao - ticket - mayweather - boxing | 43 | 3_fight_pacquiao_ticket_mayweather |
| 4 | race - hamilton - rosberg - marathon - vettel | 28 | 4_race_hamilton_rosberg_marathon |
| 5 | england - cook - pietersen - cricket - test | 25 | 5_england_cook_pietersen_cricket |
| 6 | villa - sherwood - benteke - aston - game | 19 | 6_villa_sherwood_benteke_aston |
| 7 | try - minute - huddersfield - bristol - league | 17 | 7_try_minute_huddersfield_bristol |
| 8 | celtic - scottish - rangers - game - inverness | 15 | 8_celtic_scottish_rangers_game |
| 9 | mcilroy - masters - woods - augusta - golf | 14 | 9_mcilroy_masters_woods_augusta |
| 10 | arsenal - wenger - arsenals - reading - coquelin | 14 | 10_arsenal_wenger_arsenals_reading |
| 11 | newcastle - sunderland - advocaat - game - rangers | 13 | 11_newcastle_sunderland_advocaat_game |
| 12 | cup - toulon - saracens - clermont - bath | 12 | 12_cup_toulon_saracens_clermont |
| 13 | stadium - stand - fan - fa - final | 12 | 13_stadium_stand_fan_fa |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: english
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
## Framework versions
* Numpy: 1.22.4
* HDBSCAN: 0.8.33
* UMAP: 0.5.3
* Pandas: 1.5.3
* Scikit-Learn: 1.2.2
* Sentence-transformers: 2.2.2
* Transformers: 4.31.0
* Numba: 0.56.4
* Plotly: 5.13.1
* Python: 3.10.6
|