KhaldiAbderrhmane commited on
Commit
05d7cf5
·
verified ·
1 Parent(s): b29a571

Update modeling_emotion_classifier.py

Browse files
Files changed (1) hide show
  1. modeling_emotion_classifier.py +29 -29
modeling_emotion_classifier.py CHANGED
@@ -1,29 +1,29 @@
1
- from transformers import PreTrainedModel, HubertModel
2
- import torch.nn as nn
3
- import torch
4
- from .configuration_emotion_classifier import EmotionClassifierConfig
5
-
6
-
7
- class EmotionClassifierHuBERT(PreTrainedModel):
8
- config_class = EmotionClassifierConfig
9
-
10
- def __init__(self, config):
11
- super().__init__(config)
12
- self.hubert = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
13
- self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1)
14
- self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1)
15
- self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8)
16
- self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size, num_layers=2, batch_first=True, bidirectional=True)
17
- self.fc = nn.Linear(config.hidden_size * 2, config.num_classes) # * 2 for bidirectional
18
-
19
- def forward(self, x):
20
- with torch.no_grad():
21
- features = self.hubert(x).last_hidden_state
22
- features = features.transpose(1, 2)
23
- x = torch.relu(self.conv1(features))
24
- x = torch.relu(self.conv2(x))
25
- x = x.transpose(1, 2)
26
- x = self.transformer_encoder(x)
27
- x, _ = self.bilstm(x)
28
- x = self.fc(x[:, -1, :])
29
- return x
 
1
+ from transformers import PreTrainedModel, HubertModel
2
+ import torch.nn as nn
3
+ import torch
4
+ from .configuration_emotion_classifier import EmotionClassifierConfig
5
+
6
+
7
+ class EmotionClassifierHuBERT(PreTrainedModel):
8
+ config_class = EmotionClassifierConfig
9
+
10
+ def __init__(self, config):
11
+ super().__init__(config)
12
+ self.hubert = HubertModel.from_pretrained("facebook/hubert-large-ls960-ft")
13
+ self.conv1 = nn.Conv1d(in_channels=1024, out_channels=512, kernel_size=3, padding=1)
14
+ self.conv2 = nn.Conv1d(in_channels=512, out_channels=256, kernel_size=3, padding=1)
15
+ self.transformer_encoder = nn.TransformerEncoderLayer(d_model=256, nhead=8)
16
+ self.bilstm = nn.LSTM(input_size=256, hidden_size=config.hidden_size_lstm, num_layers=2, batch_first=True, bidirectional=True)
17
+ self.fc = nn.Linear(config.hidden_size_lstm * 2, config.num_classes) # * 2 for bidirectional
18
+
19
+ def forward(self, x):
20
+ with torch.no_grad():
21
+ features = self.hubert(x).last_hidden_state
22
+ features = features.transpose(1, 2)
23
+ x = torch.relu(self.conv1(features))
24
+ x = torch.relu(self.conv2(x))
25
+ x = x.transpose(1, 2)
26
+ x = self.transformer_encoder(x)
27
+ x, _ = self.bilstm(x)
28
+ x = self.fc(x[:, -1, :])
29
+ return x