--- license: apache-2.0 tags: - generated_from_trainer datasets: - pub_med_summarization_dataset metrics: - rouge model-index: - name: t5-small-finetuned-pubmed results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: pub_med_summarization_dataset type: pub_med_summarization_dataset args: document metrics: - name: Rouge1 type: rouge value: 8.8295 --- # t5-small-finetuned-pubmed This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the pub_med_summarization_dataset dataset. It achieves the following results on the evaluation set: - Loss: 2.2635 - Rouge1: 8.8295 - Rouge2: 3.2594 - Rougel: 7.9975 - Rougelsum: 8.4483 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 2.5892 | 1.0 | 4000 | 2.3616 | 10.1169 | 3.9666 | 8.8854 | 9.5836 | 19.0 | | 2.559 | 2.0 | 8000 | 2.3045 | 9.4321 | 3.5398 | 8.424 | 8.984 | 19.0 | | 2.5029 | 3.0 | 12000 | 2.2820 | 9.1658 | 3.3686 | 8.2222 | 8.7311 | 19.0 | | 2.4673 | 4.0 | 16000 | 2.2692 | 8.8973 | 3.2617 | 8.0395 | 8.5046 | 19.0 | | 2.4331 | 5.0 | 20000 | 2.2635 | 8.8295 | 3.2594 | 7.9975 | 8.4483 | 19.0 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6